• 제목/요약/키워드: shear behavior and performance

검색결과 661건 처리시간 0.021초

구조변수에 의한 튜브 구조의 거동 (Behaviour of Tube Structures in terms of Structural Parameters)

  • 이강건;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2002
  • The global behavior of tube structures (including tube and tube(s)-in-tube constructions) is investigated for the behavioral characteristics of the structures and their performance in relation to the various structural parameters. The stiffness factor in terms of the axial stiffness of the columns and the bending stiffness of both columns and beams is chosen as a parameter to explain the global behavior of the structures. The shear-lag phenomenon is also discussed to explain the general behavior of the structures. Three types of tube structures, with various structural parameters, are analysed for the comparative study, and the results are compared to investigate the structural response and performance of such structures. As a result of the comparison it is obtained that the axial stiffness of the columns is the most important factor governing the response of the tube structures under lateral loading

  • PDF

Structural performance of reinforced concrete wall with boundary columns under shear load

  • Chu, Liusheng;He, Yuexi;Li, Danda;Ma, Xing;Cheng, Zhanqi
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.479-489
    • /
    • 2020
  • This paper proposed a novel form of reinforced concrete (RC) shear wall confined with boundary columns. The structural effect of applying steel fiber reinforced concrete (SFRC) in the wall-column systems was studied. Three full-scale wall samples were constructed including two RC wall-RC column samples with different stirrup ratios and one RC wall-SFRC column sample. Low frequency cyclic testing was carried out to investigate the failure modes, hysteretic behavior, load-bearing capacity, ductility, stiffness degradation and energy dissipation. ABAQUS models were set up to simulate the structural behavior of tested samples, and good agreement was achieved between numerical simulation and experimental results. A further supplementary parametric study was conducted based on ABAQUS models. Both experimental and numerical results showed that increasing stirrup ratio in boundary columns did not affect much on load bearing capacity or stiffness degradation of the system. However, applying SFRC in boundary columns showed significant enhancement on load bearing capacity. Numerical simulation also shows that the structural performances of RC wall-SFRC column system were comparable to a wall-column system fully with SFRC.

순환굵은골재 흡수율에 따른 철근콘크리트 보의 구조 성능 평가 (Evaluation of Structural Performance of Reinforced Concrete Beams According to Water Absorption of Recycled Coarse Aggregate)

  • 김상우;한동석;이현아;고만영;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.49-58
    • /
    • 2012
  • 이 연구에서는 순환굵은골재를 사용한 철근콘크리트 보의 휨거동을 평가한다. 이를 위하여 골재의 종류와 흡수율이 서로 다른 3개의 실험체를 제작하였다. 모든 실험체는 4점 가력을 받도록 계획하였으며, 전단의 영향이 크도록 전단경간비를 2.5로 계획하였다. 실험체의 모멘트-곡률 관계를 예측하기 위하여 인장증강효과를 고려한 비선형 휨해석을 수행하였으며, 실험체의 전체 거동을 평가하기 위하여 전단의 영향을 고려할 수 있는 비선형 유한요소해석을 수행하였다. 실험결과, 흡수율 6%의 순환굵은골재를 사용한 실험체의 휨강도와 균열특성은 천연골재를 사용한 실험체와 서로 유사함을 확인할 수 있었다. 그리고 실험결과와 해석결과를 비교한 결과, 기존 해석방법을 이용하여 순환굵은골재를 사용한 철근콘크리트 보의 거동을 타당하게 예측할 수 있음을 확인할 수 있었다.

Behavior of fully- connected and partially-connected multi-story steel plate shear wall structures

  • Azarafrooza, A.;Shekastehband, B.
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.311-324
    • /
    • 2020
  • Until now, a comparative study on fully and partially-connected steel shear walls leading to enhancing strength and stiffness reduction of partially-connected steel plate shear wall structures has not been reported. In this paper a number of 4-story and 8-story steel plate shear walls, are considered with three different connection details of infill plate to surrounding frame. The specimens are modeled using nonlinear finite element method verified excellently with the experimental results and analyzed under monotonic loading. A comparison between initial stiffness and shear strength of models as well as percentage of shear force by model boundary frame and infill plate are performed. Moreover, a comparison between energy dissipation, ductility factor and distribution of Von-Mises stresses of models are presented. According to the results, the initial stiffness, shear resistance, energy dissipation and ductility of the models with beam-only connected infill plates (SSW-BO) is found to be about 53%, 12%, 15% and 48% on average smaller than those of models with fully-connected infill plates (SPSW), respectively. However, performance characteristics of semi-supported steel shear walls (SSSW) containing secondary columns by simultaneously decreasing boundary frame strength and increasing thickness of infill plates are comparable to those of SPSWs. Results show that by using secondary columns as well as increasing thickness of infill plates, the stress demands on boundary frame decreases substantially by as much as 35%. A significant increase in infill plate share on shear capacity by as much as 95% and 72% progress for the 4-story SSW-BO and 8-story SSSW8, respectively, as compared with non-strengthened counterparts. A similar trend is achieved by strengthening secondary columns of 4-story SSSW leading to an increase of 50% in shear force contribution of infill plate.

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.

마그네슘 소재를 이용한 차량용 시트의 충격 흡수 기구 개발 (Development of an Energy Absorbing Mechanism for Car Seat using Magnesium Alloys)

  • 신현우;박준규;이규형
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.67-75
    • /
    • 2011
  • A new energy absorbing mechanism for car seat was developed to reduce the neck injury in rear impacts. Energy absorbing principle is based on the shear-bolt behavior of thin-walled cast components subjected to static and dynamic loads. Results of shear bolt test using AM60 of Mg alloys showed robust behavior giving an approximately constant mean force during failure processes. Simply designed energy absorbing mechanism was assembled with the recliner between seat backs and seat rails. We have simulated the sled test of seat with dummy under the rear end impact using the finite element method. Results of simulation show that the new seat mechanism reduces thorax acceleration to a considerable extent, but it is not sufficient to mitigate neck injury indices e.g. neck shear force, neck tension force and NIC. With heightened headrest and narrowed backset, the energy absorbing mechanism resulted in good performance of protecting the neck injuries.

세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능 (Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars)

  • 김선우;장석준;윤현도;서수연;천영수
    • 콘크리트학회논문집
    • /
    • 제29권1호
    • /
    • pp.43-51
    • /
    • 2017
  • 현행 규정에 따르면, 세장비 4 미만의 연결보에 대각철근을 사용하도록 규정하고 있다. 그러나 대각선 다발철근 상세는 보 내부의 철근 배근작업을 어렵게 만들고, 이는 또한 시공불량으로 이어질 수 있다. 본 연구에서는 고강도 철근(SD500 및 SD600)으로 보강된 콘크리트 연결보에 관한 실험결과를 나타내었다. 연결보 제작시 시공성을 향상시키기 위하여, 본 연구에서는 헤드바를 갖는 대구경 철근을 사용하였다. 배근상세 및 세장비를 변수로 하여, 2가지의 실규모 연결보를 제작 및 실험하였다. 전단벽을 연결하는 보의 실제 거동특성을 모사하기 위하여, 링크 조인트를 갖는 철골 구조물을 반력바닥에 설치하였다. 실험 결과, 연결보와 전단벽 접합부에서의 균열 및 철근이 항복되면서, 점차 연결보 중앙부로 손상이 진전되는 것으로 나타났다. 연결보는 FEMA 450-1의 설계변위에 대한 전단벽 층간변위 규정에 요구되는 변형능력을 충분히 갖는 것으로 나타났다. 그러나 고강도 철근으로 보강된 연결보의 상세설계를 위해서는, 다양한 세장비가 연결보의 구조거동에 미치는 영향에 관한 연구가 필요하다.

복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론 (Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures)

  • 김준식;한장우
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

국내 기존 학교건축물의 내진보강 후 비선형 거동특성 (Nonlinear Behavior of Seismic-Strengthened Domestic School Building)

  • 류승현;윤현도;김선우;이강석;김용철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.243-253
    • /
    • 2011
  • 본 논문은 내진설계규정이 적용되지 않은 국내 철근콘크리트 학교 건물에 관한 해석적 연구이다. 일본의 내진진단과 비선형 정적 및 동적 해석을 통하여 대상 건축물의 내진 성능을 평가하였다. 일본의 내진진단 방법에 기초하여 철근 콘크리트 학교 건물의 부족한 내진 성능을 파악하였다. 또한, 횡하중을 받는 학교 건물의 내진거동이 해석적으로 평가되었다. 건축물의 내진 보강을 위하여 1,300kN의 내력을 받는 전단벽과 K형 가새골조가 사용되었다. 비선형 정적해석 결과, 보강에 의한 전단내력은 보강 전에 비하여 30%이상의 향상을 보이는 것으로 나타났으며, 전단벽 보강 시 최대 하중 이후에서 가새골조 보강에 비해 큰 강성저하를 나타내었다. 또한, 성능점 산정 결과에서 가새골조로 보강된 건축물이 전단벽으로 보강된 건축물에 비해 30% 이상의 변형능력을 보였다. 한편 비선형 동적해석의 시간이력해석 결과에서는 가새골조와 전단벽에 의해 보강된 건축물의 최대 변위가 보강량이 증가할수록 감소하는 경향을 나타내었다. 본 연구는 이 외에도 지진 지역에서의 건축물의 내진성능 향상을 위해 다양한 지반 조건과 지진파를 고려되어야 한다고 판단된다.

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.