• Title/Summary/Keyword: shared vision

Search Result 107, Processing Time 0.025 seconds

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

A Study for Activation Measure of Climate Change Mitigation Movement - A Case Study of Green Start Movement - (기후변화 완화 활동 활성화 방안에 관한 연구 - 그린스타트 운동을 중심으로 -)

  • Cho, Sung Heum;Lee, Sang Hoon;Moon, Tae Hoon;Choi, Bong Seok;Park, Na Hyun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.95-107
    • /
    • 2014
  • The 'Green Start Movement' is a practical movement of green living to efficiently reduce the greenhouse gases originating from non-industrial fields such as household, commerce, transportation, etc. for the 'materialization of a low carbon society through green growth (Low Carbon, Green Korea)'. When the new government took office, following the Lee Myeongbak Administration that had presented 'Low Carbon, Green Growth' as a national vision, it was required to set up the direction of the practical movement of green life to respond to climate change persistently and stably as well as to evaluate the performance of the green start movement over the past 5 years. A questionnaire survey was administered to a total of 265 persons including public servants, members of environmental and non-environmental NGOs, participants of the green start movement and professionals. In the results of the questionnaire survey, many opinions have indicated that the awareness of the green start movement is increasing and the green start movement has had a positive impact on individual behavior and group behavior in terms of green living. The result shows, however, that the environmental NGOs don't cooperate sufficiently to create a 'green living' effect on a national scale. Action needs to be taken on the community level in order to generate a culture of environmental responsibility. The national administration office of the Green Start Movement Network should play the leading role between the government and environmental NGOs. The Green Start National Network should have greater autonomy and governance of the network needs to be restructured in order to work effectively. Also the Green Start Movement should identify specific local characteristics to support activities that reduce greenhouse gas emissions. Best practices can be shared to reduce greenhouse gas emissions by a substantial amount.

Verification the Systems Thinking Factor Structure and Comparison of Systems Thinking Based on Preferred Subjects about Elementary School Students' (초등학생의 시스템 사고 요인 구조 검증과 선호 과목에 따른 시스템 사고 비교)

  • Lee, Hyonyong;Jeon, Jaedon;Lee, Hyundong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • The purposes of this study are: 1) to verify the systems thinking factor structure of elementary school students and 2) to compare systems thinking according to their preferred subjects in order to get implications for following research. For the study, pre-tests analyze data from 732 elementary school students using the STMI (Systems Thinking Measuring Instrument) developed by Lee et al. (2013). And exploratory factor analysis was conducted to identify the factor structure of the students. Based on the results of the pre-test, the expert group council revised the STMI so that elementary school students could respond to the 5-factor structure that STMI intended. In the post-test, 503 data were analyzed by modified STMI and exploratory factor analysis was performed. The results of the study are as follows: First, in the pre-test, elementary school students responded to the STMI with a test paper consisting of two factors (personal internal factors and personal external factors). The total reliability of the instrument was .932 and the reliability of each factor was analyzed as .857 and .894. Second, for modified STMI, elementary school students responded a 4-factor instrument. Team learning, Shared Vision, and Personal Mastery were derived independent factors, and mental model and systems analysis were derived 1-factor. The total reliability of the instrument was .886 and the reliability of each factor was analyzed as .686 to .864. Finally, a comparison of systems thinking according to preferred subjects showed a significant difference between students who selected science (engineering) group and art (music and physical education). In conclusion, it was confirmed that statistically meaningful results could be obtained using STMI modified by term and sentence structure appropriate for elementary school students, and it is a necessary to study the relation of systems thinking with various student variables such as the preferred subjects.

Science Teachers' Awareness of the Criteria for Minimum Achievement Standards in Science to Support Basic Skills (기초학력 보장을 위한 과학과 최소한의 성취기준에 대한 과학 교사들의 인식)

  • Eun-Jeong Yu;Taegyoung Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.265-276
    • /
    • 2023
  • The purpose of this study was to develop a plan to ensure that students lacking basic science skills acquire the minimum needed science learning ability while completing the common curriculum. We surveyed 27 elementary and secondary science teachers with experience in research and teaching related to basic skills support to investigate their perceptions of the criteria for minimum achievement standards using Consensual Qualitative Research (CQR) and Analytic Hierarchy Process (AHP). The results indicated that the science teachers tended to describe low achievers as lacking science learning competency, accumulating a science learning deficit, and lacking prerequisite knowledge. However, there were some differences in the characteristics that the elementary and secondary teachers paid attention to in students with insufficient science and basic academic skills. Specifically, the secondary teachers demonstrated greater sensitivity towards low learning motivation and difficulties in using scientific symbols, whereas the elementary teachers were more sensitive towards students' attitudes towards science or lack of experience. Furthermore, it has been observed that the prioritization of items, categorized by school level, differs in terms of setting minimum achievement standards to ensure basic skill support. This implies the need to develop minimum achievement standards considering various variables based on the school level. As there are diverse opinions among science teachers, depending on their expertise, regarding the factors to be considered when developing these standards to guarantee science and basic skill support. Based on the findings of the study, policy support is required to enhance teachers' professionalism in developing students' basic skills while considering the individual context and diversity of low achievers. Additionally, it is crucial to establish a shared vision for students lacking basic skills to reduce the gap between national policy and the practices of science teachers in ensuring support for basic skills.

Re-validation of the Revised Systems Thinking Measuring Instrument for Vietnamese High School Students and Comparison of Latent Means between Korean and Vietnamese High School Students (베트남 고등학생을 대상으로 한 개정 시스템 사고 검사 도구 재타당화 및 한국과 베트남 고등학생의 잠재 평균 비교)

  • Hyonyong Lee;Nguyen Thi Thuy;Byung-Yeol Park;Jaedon Jeon;Hyundong Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.157-171
    • /
    • 2024
  • The purposes of this study were: (1) to revalidate the revised Systems Thinking Measuring Instrument (Re_STMI) reported by Lee et al. (2024) among Vietnamese high school students and (2) to investigate the differences in systems thinking abilities between Korean and Vietnamese high school students. To achieve this, data from 234 Vietnamese high school students who responded to translated Re_STMI consisting of 20 items and an Scale consisting of 20 items were used. Validity analysis was conducted through item response analysis (Item Reliability, Item Map, Infit and Outfit MNSQ, DIF between male and female) and exploratory factor analysis (principal axis factor analysis using Promax). Furthermore, structural equation modeling was employed with data from 475 Korean high school students to verify the latent mean analysis. The results were as follows: First, in the item response analysis of the 20 translated Re_STMI items in Vietnamese, the Item Reliability was .97, and the Infit MNSQ ranged from .67 to 1.38. The results from the Item Map and DIF analysis align with previous findings. In the exploratory factor analysis, all items were loaded onto intended sub-factors, with sub-factor reliabilities ranging from .662 to .833 and total reliability at .876. Confirmatory factor analysis for latent mean analysis between Korean and Vietnamese students yielded acceptable model fit indices (χ2/df: 2.830, CFI: .931, TLI: .918, SRMR: .043, RMSEA: .051). Lastly, the latent mean analysis between Korean and Vietnamese students revealed a small effect size in systems analysis, mental models, team learning, and shared vision factors, whereas a medium effect size was observed in personal mastery factors, with Vietnamese high school students showing significantly higher results in systems thinking. This study confirmed the reliability and validity of the Re_STMI items. Furthermore, international comparative studies on systems thinking using Re_STMI translated into Vietnamese, English, and other languages are warranted in the context of students' systems thinking analysis.

An Empirical Study on the Determinants of Supply Chain Management Systems Success from Vendor's Perspective (참여자관점에서 공급사슬관리 시스템의 성공에 영향을 미치는 요인에 관한 실증연구)

  • Kang, Sung-Bae;Moon, Tae-Soo;Chung, Yoon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.139-166
    • /
    • 2010
  • The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.