• Title/Summary/Keyword: shared left-turn lane

Search Result 7, Processing Time 0.025 seconds

A Study on the Operational Efficiency of Intersection Shared Lanes (교차로 공용차로 운영 효율성 분석)

  • Park, Kun-Young;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • This study focuses on operational analysis of 2 types of intersection shared lanes. First, the analysis showed that a through & right-turn shared lane is always less used than the adjacent through-only lanes and as a result, operational efficiency deteriorates. To improve the efficiency fine-tuning in signal timing optimization using lane-by-lane traffic volume data is required. Further improvement can be achieved by guiding drivers to equally use the shared lane. For left-turn & U-turn shared lanes, it was found that saturation flow rate is affected by interference between U-turn and conflicting right-turn movements. However, since such interference does not occur in every cycle, a statistical model must be established to develop realistic adjustment factor for saturation flow rate of the shared lane.

Evaluation of Mobility and Safety of Operating an Overlap Phase on a Shared-Left-Turn Lane Using a Microscopic Traffic Simulation Model (미시교통시뮬레이션모형을 이용한 공용 좌회전 차로의 중첩현시운영의 이동성과 안전성 평가 연구)

  • Yun, Il-Soo;Han, Eum;Woo, Seok-Cheol;Yoon, Jung-Eun;Park, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.15-26
    • /
    • 2012
  • Government agencies including the national police agency have executed diverse efforts including continuous improvements of traffic facilities and operation methods, education, enforcements in order to improve traffic operation systems; nevertheless there have been continuous criticisms on irrationality in traffic signal and road facility operation. One of the reasons may be the lack of systematic preliminary evaluations on various alternatives. However, there was no appropriate tool to evaluate the mobility and safety of thus alternatives in a systematic way. Therefore, this study proposes the systematic use of microscopic traffic simulation models as a comprehensive evaluation tool. In addition, this study verified the potential of using a microscopic traffic simulation model using the case of operating an overlap phase on a shared-left-turn lane through a systematic way where the evaluation was conducted through data collection, building networks, calibrating microscopic simulation models, producing performance measures, evaluating mobility and safety, and so on. As a result, the operation of overlap phase on a shared-left-turn lane showed no big difference from other operation scenarios such as leading left-turn on exclusive left turn lane in terms of mobility. However the operation of overlap phase on a shared-left-turn lane decreased safety by increasing potential conflicts.

Traffic Signal Timing at Interconnected and Semi-Protected-Left-Turn Intersections for Energy Saving (에너지절약을 위한 상호련결된 반보호좌회전 교차로의 신호시간설계)

  • 김경환
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.25-40
    • /
    • 1990
  • This study was undertaken to develop a traffic signal timing method for interconnected and semi-protected-left-turn intersections(the intersections which have left-turn signal but not exclusive left-turn lanes) on four-lane streets for energy saving and to computerize the method for the practical use. For this study, a probability model which could estimate the utilized time of the shared left-turn lane by through traffic during green period was developed based on field studies. The two left-turn treatments, leading and lagging left-turns, were tested for the intersections, and it can be concluded that the leading left-turn was more efficient for the normal urban streets on which through traffic is major traffic. Adopting the leading left-turn macro-models to estimate vehicular average delay and proportions of vehicles stopped at the intersections were developed. Using the two models as well as the idling fuel consumpution rate and the excess fuel consumption per stop-go speed change, a traffic signal timing method for the intersections for energy saving was developed and computerized. The method can be used for more than four-lane streets and for other measures of effectiveness such as minimum delay, minimum stop rates, etc.

  • PDF

Vehicles' CO2 Emissions by Intersection Types (교차로 형태에 따른 차량 당 탄소가스 배출량 비교)

  • Kim, Da-Ye;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.123-133
    • /
    • 2013
  • PURPOSES : The present paper is to compare vehicles' $CO_2$ emissions in roundabouts and signalized intersections. METHODS : The present paper uses the SIDRA software with variables of traffic and road conditions. RESULTS : The results of the study are as follows : First, when entering traffic volumes are more than 1600pcph, vehicle's $CO_2$ emissions in roundabouts are lower than those of signalized intersections regardless of the left turn ratio. Second, When entering traffic volumes are more than 2800pcph, vehicles's $CO_2$ emissions in 2-lane approaches are lower than those of 1-lane approaches in signalized intersection. Third, when entering traffic volumes are more than 1600pcph, vehicle's $CO_2$ emissions of CASE B are lowest. (CASE B is the condition with one exclusive left-turn lane and one exclusive straight lane and one shared straight lane with right-turn.) Also, CASE A is the condition that vehicle's $CO_2$ emissions in roundabouts are lower than those of signalized intersections between 1600pcph and 3600pcph. (CASE A is the condition with one exclusive left-turn lane and one shared straight lane with right-turn.) But, when entering traffic volumes are more than 4000pcph, vehicle's $CO_2$ emissions in signalized intersections is lower than those of roundabouts. CONCLUSIONS : It may be concluded that vehicle's $CO_2$ emissions on roundabouts are much lower than those of signalized intersections, especially, when entering traffics volumes are between 1600pcph and 3600pcph in 1-lane or 2-lane approaches.

Development of Adjustment Factors for The Shared Left-turn Lane with U-Turn at the Signalized Intersection (신호교차로에서 좌회전.유턴 공용차로 보정계수 산정)

  • 안형기;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.43-56
    • /
    • 2000
  • 본 연구의 목적은 우리 나라의 주요 간선도로상에서 운영되고 있는 좌회전 ·유턴 공용차로에 대한 적절한 보정계수를 산정하는 것이다. 이에 본 연구에서는 좌회전 2차로(1차로 유턴공용) 3개 지점 및 좌회전 ·유턴 공용 1타로 3개 지점에 대해서 연구를 수행하였으며, 유턴 전용차로 2개 지점에 대해서도 연구를 수행하였다. 좌회전 유턴 공용차로에서의 유턴 비율에 따른 포화교통류율의 변화를 분석하였으며, 회귀모형을 도출하였다. 본 연구의 연구 결과는 다음과 같다. 첫째, 중앙분리대로 분리된 유턴 전용차로를 대상으로 분석한 유턴 포화교통류율은 2,105(pcphgpl)로 산정되었다. 둘째, 좌회전 2차로(1차로 유턴공용)에 대하여 3개지점을 대상으로 유턴 비율에 따른 포화교통류율의 살펴보고 적절한 보정계수를 산정하였으며 각 차로별 좌회전 포화교통류율은 1차로는 2,105(Pcphgpl), 2차로는 2,023(Pcphgpl)이 산정되었다. 또한 유턴 비율과 포화교통류율에 따른 회귀모형을 산정하였다. 셋째, 좌회전 ·유턴 용 1차로에 대하여 3개지점을 대상으로 유턴 비율에 따른 포화교통류율의 변화를 살펴보고, 적절한 보정계수를 산정하였으며, 좌회전 포화교통류율은 2,143(Pcphgpl)으로 산정되었다. 또한 유턴 비율과 포화교통류율에 따른 회귀모형을 산정하였다. 넷째, 회귀모형의 산정결과 좌회전 ·유턴 공용차로에서는 유턴 비율에 따라서 포화교통류율이 감소하는 것으로 나타났다. 본 연구의 기대효과로는 유턴 비율에 따른 좌회전 유턴 공용차로의 포화교통류율 감소에 대하여 용량분석시 적용할 수 있는 보정계수를 제시함으로서 보다 정확한 신호교차로의 운영분석을 할 수 있다고 판단된다. 또한 신호시간 설계시에도 유턴 수요에 따른 적절한 설계에 도움을 줄 수 있으며 따라서 신호교차로의 운영효율을 증대시키는데 기여할 것으로 판단된다.

  • PDF