• Title/Summary/Keyword: shape-memory alloys

Search Result 171, Processing Time 0.027 seconds

Identification of crystal variants in shape-memory alloys using molecular dynamics simulations

  • Wu, Jo-Fan;Yang, Chia-Wei;Tsou, Nien-Ti;Chen, Chuin-Shan
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties due to the solid-solid phase transformation. These phenomena are dominated by the evolution of microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in the simulation results, which consist of large numbers of atoms. In the present work, a method is developed to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and mechanical boundary conditions are examined. The method is validated by comparing MD-simulated interface normals with theoretical solutions. In addition, the results show that, in certain cases, the interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is discussed.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

Shape Memory Characteristics and Crystallization Annealing of Amorphous $Ti_{50}-Ni_{30}-Cu_{20}$ Ribbons (비정질 $Ti_{50}-Ni_{30}-Cu_{20}$ 리본의 결정화 열처리와 형상기억특성 변화)

  • Kim, Yoen-Wook;Yun, Young-Mok
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • Ti-Ni-Cu alloys are very attractive shape memory alloys for applications as actuators because of a large transformation elongation and a small transformation hysteresis. Rapidly solidified Ti-Ni alloy ribbons have been known to have the shape memory effect and superelasticity superior to the alloy ingots fabricated by conventional casting. In this study, solidification structures and shape memory characteristics of $Ti-Ni_{30}-Cu_{20}$ alloy ribbons prepared by melt spinning were investigated by means of DSC and XRD. Operating parameters to fabricate the amorphous ribbons were the wheel velocity of 55 m/s and the melt spinning temperature of $1500^{\circ}C$. The crystallization temperature was measured to be $440^{\circ}C$. The crystallized ribbons exhibited very fine microstructure after annealing at $440^{\circ}C$ for 10 minutes and $460^{\circ}C$ for 5 minutes and was deformed up to about 6.8% and 6.23% in ductile manner, respectively. Stress-strain curve of the ribbon exhibited a flat stress-plateau at 64 MPa and this is associated with the stress-induced a B2-B19 martensitic transformation. During cycle deformation with the applied stress of 220 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $4.3^{\circ}C$ and 3.6%.

Smart Composite Beams with Shape Memory Alloy Strips Having TWSME (2방향 형상기억효과 SMA 띠가 부착된 복합재 보의 거동)

  • Kim, Jung-Taek;Kim, Cheol;Yoon, Ji-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.51-54
    • /
    • 2005
  • Shape memory alloys (SMAs) find many applications in smart composite structural systems as the active components. Their ability to provide a high force and large displacement makes them an excellent candidate for an actuator for controlling the shape of smart structures. In this paper, using a macroscopic model that captures the thermo-mechanical behaviors and the two-way shape memory effect (TWSME) of SMAs smart morphing polymeric composite shell structures like shape-changeable UAV wings is demonstrated and analyzed numerically and experimentally when subjected to various kinds of pressure loads. The controllable shapes of the morphing shells to that thin SMA strip actuator are attached are investigated depending on various phase transformation temperatures. SMA strips start to transform from the martensitic into the austenitic state upon actuation through resistive heating, simultaneously recover the prestrain, and thus cause the shell structures to deform three dimensionally. The behaviors of composite shells attached with SMA strip actuators are analyzed using the finite element methods and 3-D constitutive equations of SMAs. Several morphing composite shell structures are fabricated and their experimental shape changes depending on temperatures are compared to the numerical results. That two results show good correlations indicates the finite element analysis and 3-D constitutive equations are accurate enough to utilize them for the design of smart composite shell structures for various applications.

  • PDF

PHASE TRANSITIONS AND ELECTROCHEMICAL CORROSION BEHAVIORS OF Ti50Ni50-xCux SHAPE MEMORY ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;SANGHYUN RHO
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1303-1306
    • /
    • 2020
  • TiNi alloys have excellent shape memory properties and corrosion resistance as well as high biocompatibility. This study investigated the effects of copper addition on the phase transitions and electrochemical corrosion behaviors of Ti50Ni50-xCux alloys. TiNi, Ti50Ni47Cu3, Ti50Ni44Cu6, and Ti50Ni41Cu9 alloys were prepared using vacuum arc remelting followed by 4 h homogenization at 950℃. Differential scanning calorimetry and X-ray diffraction analyses were conducted. The corrosion behaviors of the alloys were evaluated using potentiodynamic polarization test in Hank's balanced salt solution at a temperature of 36.5 ± 1℃. The TiNi alloy showed phase transitions from the cubic B2 phase to the monoclinic B19' phase when the alloy was thermally cycled. The addition of copper to the TiNi alloy played a major role in stabilizing the orthorhombic B19 phases during the phase transitions of Ti50Ni50-xCux alloys. The shifts in the corrosion potential toward the positive zone and the low corrosion current density were affected by the amount of Cu added. The corrosion resistance of the TiNi alloy increased with increasing copper content.

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.

A Study on Cyclic Deformation and Fatigue Phenomenon of Shape Memory Alloy (형상기억합금의 반복변형특성과 피로현상에 관한 연구)

  • 박영철;오세욱;허정원;이명렬
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1992
  • Recently, the robot actuator worked by the driving recovery-force of the thermo elastic martensitic transformation of shape memory alloys(SMA) has been studied. In general, such a SMA actuator necessitates a number of cyclic repeated motion, so that the investigation of gradual decrease of recovery force with repeated motion cycle as well as the prevention of such a degradation of shape memory effect(SME) are very important for the actual use of a robot actuator. However, such research and discussions about the degradation of SME are very few up to the present. Therefore, in this study, the characteristics of the cyclic deformation and degradation of SME of Ti-Ni alloy would be investigated and discussed in detail by current heat type fatigue tester, which is a newly designed fatigue tester by author. In addition, we will establish a new design concept for robot actuator from these result.

  • PDF

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Experimental Study on the TWSME Characteristics using Compressive Loading Cycles (압축 하중사이클을 이용한 양방향 형상기억효과 특성 연구)

  • Yoo, Young-Ik;Kim, Hyun-Chul;Lee, Jung-Ju;Lee, Woo-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.101-107
    • /
    • 2009
  • Actuators using shape memory alloys use the one-way shape recovery stress. But when external load is applied the accumulated plastic strain induced by repeated deformation is the factor of generation of uncorrect recovery stress and unreliability. To solve this problem, two-way shape memory effect (TWSME) is considered. TWSME induced by plastic deformation have advantages including simple heating cycle without external force and enough recovery force for using actuators. but there is no research on cylinder-type or tube-type shape memory alloy actuators using two-way shape memory effect until now. Therefore in this study, characteristics of two-way shape memory effect is verified through the compression experiments using cylinder-type and tube-type specimens.