• 제목/요약/키워드: shape rolling process

검색결과 135건 처리시간 0.024초

마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part I: 유한요소 해석기반 공정변수 영향분석) (Analysis and Experiments on the Thread Rolling Process for Micro-Sized Screws Part I: Process Parameter Analysis by Finite-Element Simulation)

  • 송정한;이종섭;이혜진;이근안;박기동;나승우;이형욱
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.581-587
    • /
    • 2011
  • The production of high-precision micro-sized screws, used to fasten parts of micro devices, generally utilizes a cold thread-rolling process and two flat dies to create the teeth. The process is fairly complex, involving parameters such as die shape, die alignment, and other process variables. Thus, up-front finite-element(FE) simulation is often used in the system design procedure. The final goal of this paper is to produce high-precision screw with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ (M0.8${\times}$P0.2) by a cold thread rolling process. Part I is a first-stage effort, in which FE simulation is used to establish process parameters for thread rolling to produce micro-sized screws with M1.4${\times}$P0.3, which is larger than the ultimate target screw. The material hardening model was first determined through mechanical testing. Numerical simulations were then performed to find the effects of such process parameters as friction between work piece and dies, alignment between dies and material. The final shape and dimensions predicted by simulation were compared with experimental observation.

유한요소해석에 의한 하니컴 코어의 성형공정에 관한 연구 (A Study on the Forming Process of Honeycomb Core by Finite Element Analysis)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.58-64
    • /
    • 2011
  • In this paper, research on the manufacturing technology of hexagonal structure core is investigated. Also the optimal forming process of the honeycomb core is developed and the rolling process is analyzed using finite element code, $DEFORM^{TM}$-3D. The standard honeycomb has a uniform hexagonal structure defined by the material, cell size, cell wall thickness and bulk density. Honeycomb core products can be made from any thin, flat material. The most common cell configuration is the hexagon but there are many other shapes for special applications. Because of the precision shape and the thin thickness, the honeycomb core is not easy to manufacture in the metal forming process. Through this study it was confirmed that after the rolling process, the section of honeycomb close to the standard shape can be obtained. This result is reflected to the manufacturing process design for the honeycomb core.

선재압연공정의 소재 자유표면 형상예측 (Prediction of Stress Free Surface Profile of Wrokpiece in Rod Rolling Process)

  • 이영석;김영호;진영은
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.174-180
    • /
    • 2000
  • A reliable analytic model that determines the cross sectional shape of a workpiece(material) in round-oval(or oval-round) pass sequence has been developed. the cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove to the roll axis direction. The requirements we placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by hot rod rolling experiment with the roll gap and specimen size changed. The cross sectional shape and area of a workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. It was found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

대면적 UV 임프린팅 공정에서 잔류층 두께 예측 (Prediction of Residual Layer Thickness of Large-area UV Imprinting Process)

  • 김국원
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.79-84
    • /
    • 2013
  • Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.

강-열점소성 유한요소법을 이용한 알루미늄 링압연 공정 해석 (Analysis of Aluminium Ring Rolling Process Using Thermo-Rigid-Plastic Finite Element Method)

  • 구상완;이종찬;윤수진;김낙수
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.815-822
    • /
    • 2003
  • The ring rolling process involves not only three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece but also heat transfer among workpiece, rolls and environment. In this study, deformation and heat transfer analyses were conducted by using the three-dimensional thermo-rigid-plastic finite element method. Three cases of plain ring rolling process were, respectively, simulated for the predictions of roll forces and the highest temperature zone during the aluminum process that ductile fracture often occurs. In addition, to prevent fishtail phenomena of the ring workpiece, axial rolls were used for this study.

유한요소해석과 반응표면법을 이용한 앵글바의 폭퍼짐 예측 및 공형설계에 관한 연구 (Roll Profile Design Considering Spread in Shape Rolling of Angle Bar by FE-analysis and Response Surface Method)

  • 이상진;고대철;이상곤;김병민
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1368-1375
    • /
    • 2012
  • In this paper, a method for prediction of spread is proposed to design proper roll profile taking into account spread in shape rolling of angle bar. The effect of the process variables on spread, such as draught ratio, bending angle and aspect ratio, is analyzed by FE-analysis and response surface method (RSM). Roll profiles for equal angle bar are designed with the spread predicted by the regression equation. Effectiveness of the designed roll profiles are verified by FE-analysis in which the flange length, strain distribution, mean strain and roll torque are compared with those by Geuze. Finally, the proposed method is applied to the design of roll profile for unequal angle bar. As a result, the final product can be obtained within the allowable tolerance of ${\pm}0.5mm$ in length. Therefore, it is found that the prediction of spread can improve the efficiency of design roll profile in shape rolling of angle bar.

후판 압연공정에서 선단부 굽힘 예측을 위한 롤 바이트 형상맵 기법에 관한 연구 (A Roll-Bite Profile Map Approach for the Prediction of Front End Bending in Plate Rolling)

  • 변상민;이재현;김상록
    • 소성∙가공
    • /
    • 제20권4호
    • /
    • pp.284-290
    • /
    • 2011
  • The front end bending(FEB) behavior of material that usually occurs in plate rolling is investigated. In this paper, a rollbite profile map approach that systematically predicts the FEB slope is presented. It is based on the concurrent use of shape factors and reduction ratios to ensure an accurate value of the FEB and its slope. In order to obtain the unit roll-bite profile map, the FEB slope model was decomposed into a temperature deviation component and a roll-velocity deviation component. By mapping the results of a series of finite element analyses to the unit functions of the roll-bite profile map, it was possible to obtain a realistic prediction of the FEB slope applicable to an actual plate rolling process. Thereby, the usefulness of the present approach is clearly demonstrated.

등속조인트 인너레이스 케이지 링 압연공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of a Ring Rolling Process of the Inner Race Cage of a Constant Velocity Joint)

  • 문호근;박정휘;이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.352-356
    • /
    • 2007
  • In this study, a rigid-plastic finite element method is applied to simulating a ring rolling process of the inner race cage of a constant velocity joint for the passengers' cars. The ring rolling process is mathematically modeled by several assumptions. The defect formation at the side ends is predicted in detail. The predictions are compared with the experiments and a good agreement is observed in terms of deformed shape.

  • PDF

전조시 Spindle Screw의 정밀도 향상을 위한 최적 소재경 선정 (Determination of optimum blank diameter for the high precision of Spindle Screw)

  • 김광호;김동환;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.133-137
    • /
    • 2002
  • This paper summarizes the results of a numerical study conducted to analyze the determination of optimum blank diameter on material flow and thread profile for Spindle Screw in external thread rolling. Initial blank diameter affect a quality of Spindle Screw in thread rolling process. Therefore, it is very important to determine the optimum blank diameter in thread rolling process. In order to determine the optimum blank diameter, this paper suggest the calculating method of initial blank diameter considering real shape of tooth. The finite element code DEFORM is applied to analyze the metal flow of tooth. then the analytical results are verified by experiment of thread rolling for Spindle Screw.

  • PDF