• Title/Summary/Keyword: shape retrieval

Search Result 230, Processing Time 0.023 seconds

Contents-based Image Retrieval Using Regression of Shape Features (모양 정보의 회귀추정에 의한 내용 기반 이미지 검색 기법)

  • Song Jun-Kyu;Choi Hwang-Kyu
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.157-166
    • /
    • 2001
  • In this paper we propose a feature vector extraction technique using regression of shape features for the content-based image retrieval system. The proposed technique can reduce the number of dimensions of a feature vector by converting the extracted high-dimensional feature vector into a specific n-dimensional feature vector. This paper shows how to resolve the 'dimensionality curse' problem by reducing the number of dimensions of a feature vector, and shows that the technique is more efficient than the conventional techniques for the practical image retrievals.

  • PDF

An Efficient Clustering Based Image Retrieval using Color and Shape features (색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법)

  • 이근섭;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

Fast Computation of the Radius of a Bounding Circle in a Binary Image (이진영상에서 바운딩 서클의 빠른 계산방법)

  • Kim Whoi-vul;Ryoo Kwang-seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.453-457
    • /
    • 2005
  • With the expansion of Internet, a variety of image databases are widely used and it is needed to select the part of an image what he wants. In contents-based image retrieval system, Zernikie moment and ART Descriptors are used fur shape descriptors in MPEC-7. This paper presents a fast computation method to determine the radius of a bounding circle that encloses an object in a binary image. With conventional methods, the whole area of the image should be scanned first and the distance from every pixel to the center point be computed. The proposed 4-directional scan method and fast circle-drawing algorithm is utilized to minimize the scanning area and reduce the number of operations fur computing the distance. Experimental results show that proposed method saves the computation time to determine the radius of a bounding circle efficiently.

Evaluation of shape similarity for 3D models (3차원 모델을 위한 형상 유사성 평가)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Evaluation of shape similarity for 3D models is essential in many areas - medicine, mechanical engineering, molecular biology, etc. Moreover, as 3D models are commonly used on the Web, many researches have been made on the classification and retrieval of 3D models. In this paper, we describe methods for 3D shape representation and major concepts of similarity evaluation, and analyze the key features of recent researches for shape comparison after classifying them into four categories including multi-resolution, topology, 2D image, and statistics based methods. In addition, we evaluated the performance of the reviewed methods by the selected criteria such as uniqueness, robustness, invariance, multi-resolution, efficiency, and comparison scope. Multi-resolution based methods have resulted in decreased computation time for comparison and increased preprocessing time. The methods using geometric and topological information were able to compare more various types of models and were robust to partial shape comparison. 2D image based methods incurred overheads in time and space complexity. Statistics based methods allowed for shape comparison without pose-normalization and showed robustness against affine transformations and noise.

MRI Image Retrieval Using Wavelet with Mahalanobis Distance Measurement

  • Rajakumar, K.;Muttan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1188-1193
    • /
    • 2013
  • In content based image retrieval (CBIR) system, the images are represented based upon its feature such as color, texture, shape, and spatial relationship etc. In this paper, we propose a MRI Image Retrieval using wavelet transform with mahalanobis distance measurement. Wavelet transformation can also be easily extended to 2-D (image) or 3-D (volume) data by successively applying 1-D transformation on different dimensions. The proposed algorithm has tested using wavelet transform and performance analysis have done with HH and $H^*$ elimination methods. The retrieval image is the relevance between a query image and any database image, the relevance similarity is ranked according to the closest similar measures computed by the mahalanobis distance measurement. An adaptive similarity synthesis approach based on a linear combination of individual feature level similarities are analyzed and presented in this paper. The feature weights are calculated by considering both the precision and recall rate of the top retrieved relevant images as predicted by our enhanced technique. Hence, to produce effective results the weights are dynamically updated for robust searching process. The experimental results show that the proposed algorithm is easily identifies target object and reduces the influence of background in the image and thus improves the performance of MRI image retrieval.

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

Implementation of System Retrieving Multi-Object Image Using Property of Moments (모멘트 특성을 이용한 다중 객체 이미지 검색 시스템 구현)

  • 안광일;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.454-460
    • /
    • 2000
  • To retrieve complex data such as images, the content-based retrieval method rather than keyword based method is required. In this paper, we implemented a content-based image retrieval system which retrieves object of user query effectively using invariant moments which have invariant properties about linear transformation like position transition, rotation and scaling. To extract the shape feature of objects in an image, we propose a labeling algorithm that extracts objects from an image and apply invariant moments to each object. Hashing method is also applied to reduce a retrieval time and index images effectively. The experimental results demonstrate the high retrieval efficiency i.e precision 85%, recall 23%. Consequently, our retrieval system shows better performance than the conventional system that cannot express the shale of objects exactly.

  • PDF

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.