• Title/Summary/Keyword: shape of sludge

Search Result 46, Processing Time 0.031 seconds

Air Drying Technology for Dewatered Cake from Wastewater and Waterworks Sludge (상.하수 슬러지 탈수케이크의 공기건조에 관한 연구)

  • Lee, Jung-Eun;Cho, Eun-Man;Kim, Bong-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1154-1161
    • /
    • 2006
  • Air drying equipment was built as a device for reduction of dewatered cake from wastewater and waterworks sludge and to reproduce it by reusable matter. Dewatered cake was supplied into the air drying equipment which operated by air velocity of 80 m/sec, air rate 30 $m^3/min$ and air temperature of $40^{\circ}C$, and dried to produce the dried powder. The air drying equipment was composed of the air ejector which made high-speed fluid field, and cyclone which made circling fluid field. Dewatered cake was crushed at the high-speed zone as first step, and formed into dried powder of sphere shape by the collision between particles at the circling fluid zone.. Wastewater sludge with water content of 82.5 wt% was supplied 1.0 kg/min into air drying equipment and produced the dried powder which had the water content of 62.3 wt% and mass median diameter of 2.4 mm after process. At that time, it was analyzed that water removal rate was 0.1 $H_2O{\Delta}kg/min{\cdot}DS$ kg and air consumption was 170 $m^3/DS$ kg. Under same experimental conditions, when waterworks sludge was dried, water content of dried powder decrease to 47.5 wt% and mass median diameter decrease 2.1 mm and water removal rate increase 0.13 $H_2O{\Delta}kg/min{\cdot}DS$ kg. Air consumption increase 180 $m^3/DS$ kg with comparison to the results of wastewater sludge. Therefore, this technology was evaluated that drying the dewatered cake of waterworks sludge was more efficient than wastewater sludge, and also economical sludge handling technology due to drying the cake by only air.

Effects of Ingredients of Wet Etchant on Glass Slimming Process (유리기판 박막화를 위한 습식공정에서 식각액 성분의 영향)

  • Shin, Young Sik;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.474-479
    • /
    • 2020
  • The etching solution for slimming of glass substrates was manufactured and HF was used as the main ingredient of wet etching solutions. Various types of strong acids such as HCl, HNO3, H2SO4, amino acids and carboxylic acids such as citric acid, and etched solutions, respectively, were used to measure the etching rates and changes in surface shape of the glass. Regardless of the type of strong acids, the etching rate of the glass increased linearly as the added amount increased, and the sludge removal effect of the glass surface was also shown. The etching solution containing HCl showed more efficient results than other strong acids in the etching rate and the effect of removing sludge. The addition of carboxylic acid did not significantly affect the variation of etching rate, but had the effect of removing sludge. However, if amino acids were added, changes in etching rate and sludge removal were not significant.

Adsorption of Heavy Metals on Sludge from the Treatment Process of Acid Mine Drainage (산성광산배수(AMD) 처리(處理) 슬러지의 중금속(重金屬) 흡착(吸着) 특성(特性))

  • Song, Young-Jun;Lee, Gye Seung;Shin, Kang Ho;Kim, Youn-Che;Seo, Bong Won;Yoon, Si-Nae
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.35-43
    • /
    • 2012
  • This study was carried out for the purpose of obtaining basic data to utilize the AMD sludge as sorbent for heavy metal ions. The sludge from the treatment process of Acid Mine Drainage mainly consists of fine iron hydroxide or iron oxide hydrate and calcite, and the fine iron hydroxide or iron oxide hydrate has a property of adsorbing heavy metal ions. In this study, we investigated the physical property of the AMD sludge like as mineral composition, particle size and shape and chemical composition and also investigated the influence of dosage of sludge, adsorbing time, pH, initial concentration and sintering temperature on the adsorption of heavy metal ions.

The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method (유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석)

  • Jung, Byung-Gil;Bae, Jin-Woo;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

Membrane Fouling Models for Activated Sludge Cakes (활성슬러지 케이크의 분리막 오염 모델)

  • Kim, Dae Chun;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2014
  • This experiment was carried out for a laboratory scale activated sludge bioreactor equipped with submerged flat sheet membrane using the synthetic wastewater. The membrane system for the activated sludge solution of MLSS 5,000 mg/L was operated with constant permeate flux by continuously permeating and periodically 10 minute-permeating/2 minute-resting modes, respectively. The transmembrane pressure was measured as the permeate flux increased from 10 to $25L/m^2{\cdot}hr$ under the constant air flowrate 0.25 L/min. Also, the complete blocking, standard blocking, intermediate blocking, incompressible cake and linear compressible cake fouling models were retrofitted for the experimental data in order to determine the state of the membrane fouling. Because the transmembrane pressure fluctuated as a pulse shape for every period of 10 minute-permeating/2-minute resting mode, the membrane fouling models were separately applied for the maximum and minimum connecting lines. The linear compressible cake fouling model for the activated sludge cakes was the best fitted with the experimental results from the above five models.

An aerobic granular sludge process for treating low carbon/nitrogen ratio sewage

  • Yae, JaeBin;Ryu, JaeHoon;Tuyen, Nguyen Van;Kim, HyunGu;Hong, SeongWan;Ahn, DaeHee
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.238-245
    • /
    • 2019
  • This study investigated the characteristic of aerobic granular sludge (AGS) process to treat the sewage having low carbon/nitrogen ratio (Biochemical oxygen demand ($BOD_5$):Total nitrogen (T-N), 4.5:1) in sequencing batch reactor (SBR). The removal efficiency of $BOD_5$, suspended solid (SS), T-N and phosphorus ($PO_4{^{3-}}$-P) were 92.6%, 64.3% and 90.1%. Concentration and size of AGS were changed in proportion to the organic matters and nitrogen concentration of the influent (Concentration and size of AGS: 1,700-3,000 mg/L, 0.5-1.0 mm). Mixed liquor suspended solid (MLSS) also changed with the concentration of AGS (MLSS: 2,000-3,500 mg/L). When the settling time was shortened from 15 min to 10 min, size and shape of AGS were maintained (Size of AGS: 1.0-1.5 mm). In addition, the concentration of AGS and MLSS increased (Concentration of AGS: 3,500 mg/L, MLSS: 4,000 mg/L). Concentration, size and shape of AGS were affected the settling time of the reactor more than the concentration of organic matter and nitrogen in the influent. In the results of removal efficiency and changes in AGS, we confirmed that the SBR process using AGS can be used to treat the sewage having low carbon/nitrogen ratio by applying short settling time.

A Study on the Shape Optimization and Structural Analysis of the Suction Chamber for an ECO Vacuum Filter System (ECO Vacuum Filter System 용 흡입 챔버의 구조해석 및 형상 최적화에 관한 연구)

  • Lee, Choon-Man;Ha, Jae-Hyeon;Woo, Wan-Sik;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.971-977
    • /
    • 2016
  • Recently, the problem of the accumulation of fine sludge from the cutting oil generated during machining processes has become a major threat to the environment. The fine sludge has adverse affects on the human body and the environment, and significantly contributes to marine pollution. However, a microfiltration technique that can process the sludge still needs to be studied and developed on a global scale. Therefore, it is necessary to develop eco-friendly equipment such as an ECO vacuum filter system and eco-friendly technologies for processing cutting oil. In this study, a structural analysis was carried out using a finite element method (FEM). Improved models of the suction chamber for the ECO vacuum filter system were proposed based on the analysis of the displacement and stress of the system. The model with the best result was then optimized using the commercial software, ANSYS. It was confirmed that, in the optimized model, displacement and stress were reduced in comparison with the initial model. Finally, the structural stability of the optimized model was verified through analysis.

A Rapid Method for Monitoring of Gram-positive Bacteria in Wastewater Treatment Systems (폐수처리시스템에서의 그람 양성 세균 모니터링 방법)

  • Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • A simple and rapid method was developed for monitoring of Gram-positive bacteria in the wastewater treatment system. Culture suspensions of 4 Gram-positive and 4 Gram-negative strains were filtrated and stained with a polyethersulfone membrane filter and Toluidine Blue-O. To establish quantitative color image analysis, the intensity value of RGB (red-green-blue) color of a scanned filter image was analyzed with a photographic program. Red and green color values of Gram-positive bacteria were higher than those of Gram-negative bacteria. This method was applied to the activated sludge mixed with the Gram-positive bacteria. Although evaluation was difficult due to the irregular size and shape of flocs, the population of Gram-positive bacteria in the activated sludge could be monitored with floc dispersion technique. The more amounts of Gram-positive bacteria in the activated sludge led to the increase of red and green color values. This method provides a rapid and quantitative measurement of Gram-positive bacteria within the wastewater treatment systems.

Recyclability Analysis of Slags Obtained at Gasification and Incineration-Melting Conditions (가스화와 소각 용융 조건에서 생성된 슬랙의 재활용성 분석)

  • 윤용승;이계봉
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.82-91
    • /
    • 2004
  • In order to utilize inorganic components in coal and wastewater sludge as an environmentally stable material, slag-forming is considered as one of the suitable methods better than producing as an ash. Coal slag that was produced by gasification as well as the slag made from wastewater sludge by incineration or melting process have been analyzed with the viewpoint of recyclability. Slags produced by water quenching exhibited a cracked shape that has a size of few millimeters with sharp edges. Slags contain the unburned carbon content below 0.15% and expose mostly amorphous structural characteristics. Analysis results in the extraction of heavy metal compounds demonstrate that both slags from coal and wastewater sludge could be utilized as a safe recycle material even with a Japanese environmental regulation that is ten times more stringent than the current Korean standard. Slags from coal and wastewater sludge show significant differences in contents of each heavy metal compound. Since the future trend of environmental regulation shifts to the control of total content for each heavy metal compound, proper mixing of slags that contain different heavy metal contents might be an option for manufacturing recycle materials.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(II) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(II))

  • Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Hun-Ha;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1138-1142
    • /
    • 2002
  • Slag cement and supersulfated slag cement were fabricated by mixing blast furnace slag and ordinary portland cement and adapted to solidify/stabilize heavy metal contained hazardous waste sludge. In case of slag cement, it showed continuous increase of their compressive strengths, which is attributed to the formation of the C-S-H, ettringite and monosulfate with STS sludge. However, BF and COREX sludge has a different shape and composition. therefore, adequate compressive strength could not be achieved with this slag cement. In case of the mixture of the each sludge like the STS-BF or the STS-COREX, the compressive strength over the standard level for disposing the wastes could be obtained with slag cement. The supersulfated slag cement that contain accelerators was very effective in solidifying the COREX sludge, which was difficult to solidify using different cement and obtained high compressive strength only for 3 days.