• 제목/요약/키워드: shape of bubble

검색결과 139건 처리시간 0.027초

TEM investigation of helium bubble evolution in tungsten and ZrC-strengthened tungsten at 800 and 1000℃ under 40keV He+ irradiation

  • I. Ipatova;G. Greaves;D. Terentyev;M.R. Gilbert;Y.-L. Chiu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1490-1500
    • /
    • 2024
  • Helium-induced defect nucleation and accumulation in polycrystalline W and W0.5 wt%ZrC (W0.5ZrC) were studied in-situ using the transmission electron microscopy (TEM) combined with 40 keV He+ irradiation at 800 and 1000℃ at the maximum damage level of 1 dpa. Radiation-induced dislocation loops were not observed in the current study. W0.5ZrC was found to be less susceptible to irradiation damage in terms of helium bubble formation and growth, especially at lower temperature (800 ℃) when vacancies were less mobile. The ZrC particles present in the W matrix pin the forming helium bubbles via interaction between C atom and neighbouring W atom at vacancies. This reduces the capability of helium to trap a vacancy which is required to form the bubble core and, as a consequence, delays, the bubble nucleation. At 1000 ℃, significant bubble growth occurred in both materials and all the present bubbles transitioned from spherical to faceted shape, whereas at 800 ℃, the faceted helium bubble population was dominated in W.

단일 카메라를 이용한 이상유동 기포율 측정방법의 개발과 응용 (A Void Fraction Measurement Technique by Single Camera and Its Application)

  • 최동환;유정열;송진호;성재용
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.904-911
    • /
    • 2007
  • A measurement technique fur void fraction has been proposed using a time-resolved two-phase PIV system and the bubble dynamics has been investigated in gas-liquid two-phase flows. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side view image on a $45^{\circ}$ oriented mirror to be juxtaposed with the front view image. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was adopted. The present technique is applied to freely rising bubby flows in stagnant liquid. The results show that the increase of bubble flow rate gives rise to the increase of bubble size and rising velocity at first. If it goes over a certain level, the rising velocity becomes constant and the horizontal velocity grows bigger instead due to the obstruction of other bubbles.

수중 기포기둥에 의한 음파의 후방 산란특성 분석 (Analysis of Acoustic Back Scattering from Bubble Columns in Water)

  • 박광준;윤석왕
    • 한국음향학회지
    • /
    • 제10권2호
    • /
    • pp.36-43
    • /
    • 1991
  • 수중에서 원기둥 형태의 기포집단에 의한 후방 산란특성을 이론 및 실험적으로 연구하였다. 이론적 해석을 위하여, 기포기둥을 외형과 공기 함유비 및 크기에 의해 특정지워지는 하나의 단일 산란체로 가정하였으며, 일반 산란 이론식을 이용하여 분석하였다. 기포기둥의 공기 함유비가 1% 이하로 작은 경우와 기포기둥을 구성하는 단일기포의 공명 진동수보다 높은 입사 주파수에 대한 기포기둥의 산란특성은 단일기포의 크기보다 공기 함유비에 크게 의존함을 확인하였다. 또한, 공기 함유비가 증가할수록 후방 산란음압은 증가하며, 최대 음압 주파수는 저주파수 영역으로 이동되는 현상이 이론 및 실험적으로 관찰되었다.

  • PDF

초음파장내 파괴적인 기포의 운동 가시화 (Visualization of Disruptive Bubble Behavior in Ultrasonic Fields)

  • 김태홍;박근환;김호영
    • 한국가시화정보학회지
    • /
    • 제9권1호
    • /
    • pp.17-19
    • /
    • 2011
  • The bubble oscillations play an important role in ultrasonic cleaning processes. In the ultrasonic cleaning of semiconductor wafers, the cleaning process often damages micro/nano scale patterns while removing contaminant particles. However, the understanding of how patterns in semiconductor wafers are damaged during ultrasonic cleaning is far from complete yet. Here, we report the observations of the motion of bubbles that induce solid wall damage under 26 kHz continuous ultrasonic waves. We classified the motions into the four types, i.e. volume motion, shape motion, splitting or jetting motion and chaotic motion. Our experimental results show that bubble oscillations get unstable and nonlinear as the ultrasonic amplitude increases, which may exert a large stress on a solid surface raising the possibility of damaging microstructures.

단일 카메라 입자영상유속계를 이용한 이상유동 기포율 측정방법 (On the Measurement Technique of Void Fraction by Single Camera Two Phase PIV)

  • 최동환;성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1558-1563
    • /
    • 2004
  • A measurement technique for the void fraction and the bubble dynamics in gas-liquid two-phase flows has been proposed using a time-resolved two-phase PIV system. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side image into the front view with the help of a $45^{\circ}$ oriented mirror. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was applied. Consequently, the present technique shows good feasibility for the measurements of the volume fractions, mean diameters, aspect ratios and velocities of the bubbles at the three-dimensional point of view.

  • PDF

수직관에서 상승하는 Taylor 기포의 수치해석 (Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube)

  • 손기헌
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.

유압관로에서의 캐비테이션 초생 (Cavitation Inception in Oil Hydraulic Pipeline)

  • 정용길
    • 수산해양기술연구
    • /
    • 제23권3호
    • /
    • pp.127-130
    • /
    • 1987
  • 유압관로에서의 캐비테이션 발생 기구를 조사할 목적으로, 과도흐름에 수반하여 발생하는 캐비테이션 초생에 관한 실험 및 압력이 급강하 할 때의 기포 성장에 대한 계산을 행하였다. 실험에서 얻은 결과를 기초로 한 계산에서, 작동유가 절대압 영이하의 부압에 노출되어도 캐비테이션이 발생하지 않을 정도의 장력을 갖기 위해서는 소위 말하는 기포(기포 주위의 액체가 연속체로 간주될 수 있을 정도의 크기를 갖는 기포)가 유중에 존재할 가능성은 거의 없음이 입증되었다.

  • PDF

유압관로에서의 캐비테이션 초생 (Cavitation inception in oil hydraulic pipeline)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.

공기의 자가흡입에 의해 마이크로버블을 발생시키는 보텍스 노즐에 대한 실험적 연구 (An experimental study on the Vortex nozzle for generating micro-bubble by air self-suction)

  • 곽구태;박상희;김창수;유상열
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.98-104
    • /
    • 2015
  • This experiment was a study of a Vortex nozzle designed to produce micro-bubbles due To investigate air self-suction and the generation of micro-bubble by the Vortex nozzle, the dimensions of air intake region, the nozzle shape, and the nozzle exit diameter ($d_n=5,7,9.2,12.3mm$)werevaried. The air self-suction rate was ~1,000 to 2,000 cc/min at the orifice nozzle (7 mm), and ~100 and ~22 cc/min at the sector nozzles (9.2 and 12.3 mm, respectively). The most bubbles were detected in the orifice nozzle, but bubbles less than $50{\mu}m$ were found in the 12.3-mm sector nozzle. The dissolved oxygen in the tank water was much greater in Case 2 than in Case 1, at both the orifice and sector nozzles. Moreover, the reduction rate of dissolved oxygen was found to be less at the sector nozzles, than at the orifice nozzle.