• Title/Summary/Keyword: shape information

Search Result 4,354, Processing Time 0.029 seconds

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

DETECTION OF FRUITS ON NATURAL BACKGROUND

  • Limsiroratana, Somchai;Ikeda, Yoshio;Morio, Yoshinari
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.279-286
    • /
    • 2000
  • The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.

  • PDF

Content-based Retrieval System using Image Shape Features (영상 형태 특징을 이용한 내용 기반 검색 시스템)

  • 황병곤;정성호;이상열
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • In this paper, we present an image retrieval system using shape features. The preprocessing to gain shape feature includes edge extraction using chain code. The shape features consist of center of mass, standard deviation, ratio of major axis and minor axis length. The similarity is estimated as comparing the features of query image with the features of images in database. Thus, the candidates of images are retrieved according to the order of similarity. The result of an experimentation is dullness for scale, rotation and translation. We evaluate the performance of shape features for image retrieval on a database with over 170 images. The Recall and the Precision is each 0.72 and 0.83 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

Comparison of pants pattern by adolescent boy's body type using 3D virtual simulation

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • The purpose of this study was to present a good pants pattern for boys aged 13-18 by comparing and analyzing the pants pattern according to lower body shape. And through it, this study was to provide basic data for pants production considering male student body shape. The pattern of this study used the industrial type Lee Hee-chun pattern and DC Suite Program for 3D virtual simulation. As a result of the appearance evaluation, there was a significant difference between the patterns in most items. Type 2 was rated highly, followed by Type 4, Type 3, and Type 1. Type 1 required correction of the length of the pants and the amount of crotch part, while type 3 required adjustment of the pants in the knee area. Type 4 required correction of pattern drawing method of crotch width, thigh circumference, and knee circumference. This pattern method was evaluated as suitable for slender body shape. This study suggests a pants pattern system suitable for adolescent boys by reflecting the body shape characteristics of adolescent boy with a change of body shape. It is expected that this will meet the increasing demand for fitting. In this study, we have examined 3D virtual simulation, not actual wear experiment, so it will be necessary to investigate the difference through actual clothing experiment for adolescent boys.

Body Type Classification and Characteristic Analysis of the Lower Body of 14-16 Years Old Female Adolescents (14~16세 여자 청소년 하반신 체형 유형화 및 특징 분석)

  • Park, Seiyoung;Kim, Dong-Eun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.4
    • /
    • pp.672-686
    • /
    • 2022
  • The study classifies and analyzes the lower-body-shape types of female adolescents aged 14 to 16 years to provide meaningful information for making ready-to-wear patterns that are suitable for various female adolescent body types. The body-size data of 830 females aged 14 to 16 years were analyzed from 6th Size Korea anthropometric study. A factor analysis of 27 measurement items related to the lower body extracted 3 factors: waist/upper legs, height of the lower body, and hip area. A cluster analysis classified the female adolescent lower-body types into four clusters: the skinny body type with the shortest lower-body length, the most obese body type with the largest girth, the normal body type with the longest hip length, and the slender body type with the longest lower-body length. The discriminant analysis determined that nine measurement items had the most influence on classifying lower-body-shape types, and discriminant functions were derived. These results are meaningful because they provide more precise information about lower-body-shape types.

Analysis of MPEG-4 Encoder for Object-based Video (실시간 객체기반 비디오 서비스를 위한 MPEG-4 Encoder 분석)

  • Kim Min Hoon;Jang Euee Seon;Lee Sun young;Moon Seok ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • In this paper, we have analyzed the current MPEG-4 video encoding tools and proposed efcient coding techniques that reduce the complexity of the encoder. Until recently, encoder optimization without shape coding has been a major concern in video for wire/wireless low bit rate coding services. Recently, we found out that the computational complexity of MPEG-4 shape coding plays a very important role in the object-based coding through experiments. We have made an experiment whether we could get optimized object-based coding method through successfully combining latest optimized texture coding techniques with our proposed optimized shape coding techniques. In texture coding, we applied the MVFAST method for motion estimation. We chose not to use IVOPF(Intelligent VOP Formation) but to use TRB(Tightest Rectangular Boundary) for positioning VOP and, finally, to eliminate the spiral search of shape motion estimation to reduce the complexity in shape coding. As a result of experiment, our proposed scheme achieved improved time complexity over the existing reference software by $57.3\%$ and over the optimized method on which only shape coding was applied by $48.7\%$, respectively.

An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume Conservation

  • Zhang, Xiaorui;Wu, Hailun;Sun, Wei;Yuan, Chengsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1738-1756
    • /
    • 2020
  • To improve the accuracy and realism of the virtual surgical simulation system, this paper proposes an optimized mass-spring model with shape restoration ability based on volume conservation to simulate soft tissue deformation. The proposed method constructs a soft tissue surface model that adopts a new flexion spring for resisting bending and incorporates it into the mass-spring model (MSM) to restore the original shape. Then, we employ the particle swarm optimization algorithm to achieve the optimal solution of the model parameters. Besides, the volume conservation constraint is applied to the position-based dynamics (PBD) approach to maintain the volume of the deformable object for constructing the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system on the PHANTOM OMNI force tactile interaction device to realize the deformation simulation of the virtual liver. Experimental results show that the proposed model has a good shape restoration ability and incompressibility, which can enhance the deformation accuracy and interactive realism.

The 2-Phase Image Retrieval Technique using The Color and Shape Information (색상과 모양 정보를 이용한 2단계 영상 검색 기법)

  • 김봉기;오해석
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 1998
  • As a result of remarkable developments in multimedia technology, the image database system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we proposed the 2-phase Image Retrieval System considering both color and shape information as the method of image features extraction for content-based image data retrieval. At the first level, to get color information, with improving and extending the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants (IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images. And we could obtain the more improved results through the comparative test with other methods.

  • PDF

An R-wave Detection method in ECG Signal Using Refractory Period (ECG 신호에서 불응기를 이용한 R-파 검출 방법)

  • Kim, Jin-Sub;Kim, Jea-Soo;Kim, Jeong-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.93-101
    • /
    • 2013
  • The accurate detection of R-wave is important for other feature extraction in ECG, and R-wave has a lot of medical information about heart. Numerous R-wave detection algorithms have been studied on the ECG signal shape analysis, but it was difficult to find accurate R-wave when the shape of R-wave is similar to the shape of P-wave. This paper presents an R-wave detection method based on the refractory period that is the period of depolarization and repolarization of the cell membrane after excitation. And we also use the shape of kurtosis in the refractory period. The proposed method is validated using the ECG records of the MIT-BIH arrhythmia database. Experimental results show that the proposed method significantly outperforms other method in case of 105 and 108 record that have R-wave similar to P-wave, as well as other records.