• Title/Summary/Keyword: shape feature

Search Result 1,053, Processing Time 0.026 seconds

Method of Generating Shape Feature Vector Using Infrared Video for Night Pedestrian Recognition (야간 보행자인식을 위한 적외선 동영상의 형상특징벡터 생성기법)

  • Song, Byeong Tak;Kim, Tai Suk
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.755-763
    • /
    • 2018
  • In this paper, for recognize a night pedestrian from an infrared video, a new method differentiated from the existing feature vector is proposed and experimented. The new approach focuses on the shape feature vector of the structure and shape of the pedestrian image divided by the human body seven split ratio. The pedestrian images are divided into 7 square blocks from the still image of the preprocessing process. And to reduce the dimension, the square block is converted into a mosaic block. The scalar and direction of the shape feature vector is calculated by the brightness and position of the element in the mosaic. For practicality of infrared video system, the proposed method simplifies the data to be processed by reducing the amount of data in the preprocessing in order to continuously batch process the entire system in real time. Through the experiments, we verified the validity of the proposed shape feature vector. In comparison to the existing method, we propose a new shape feature vector generation method as the feature vector for night pedestrian recognition.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

Quantitative Evaluation of Nonlinear Shape Normalization Methods for the Recognition of Large-Set Handwrittern Characters (대용량 필기체 문자 인식을 위한 비선형 형태 정규화 방법의 정량적 평가)

  • 이성환;박정선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.84-93
    • /
    • 1993
  • Recently, several nonlinear shape normalization methods have been proposed in order to compensate for the shape distortions in handwritten characters. In this paper, we review these nonlinear shape normalization methods from the two points of view : feature projection and feature density equalization. The former makes feature projection histogram by projecting a certain feature at each point of input image into horizontal-or vertical-axis and the latter equalizes the feature densities of input image by re-sampling the feature projection histogram. A systematic comparison of these methods has been made based on the following criteria: recognition rate, processing speed, computational complexity and measure of variation. Then, we present the result of quantitative evaluation of each method based on these criteria for a large variety of handwritten Hangul syllables.

  • PDF

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Feature Template-Based Sweeping Shape Reverse Engineering Algorithm using a 3D Point Cloud

  • Kang, Tae Wook;Kim, Ji Eun;Hong, Chang Hee;Hwa, Cho Gun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.680-681
    • /
    • 2015
  • This study develops an algorithm that automatically performs reverse engineering on three-dimensional (3D) sweeping shapes using a user's pre-defined feature templates and 3D point cloud data (PCD) of sweeping shapes. Existing methods extract 3D sweeping shapes by extracting points on a PCD cross section together with the center point in order to perform curve fitting and connect the center points. However, a drawback of existing methods is the difficulty of creating a 3D sweeping shape in which the user's preferred feature center points and parameters are applied. This study extracts shape features from cross-sectional points extracted automatically from the PCD and compared with pre-defined feature templates for similarities, thereby acquiring the most similar template cross-section. Fitting the most similar template cross-section to sweeping shape modeling makes the reverse engineering process automatic.

  • PDF

2D Shape Recognition System Using Fuzzy Weighted Mean by Statistical Information

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.49-54
    • /
    • 2009
  • A fuzzy weighted mean method on a 2D shape recognition system is introduced in this paper. The bispectrum based on third order cumulant is applied to the contour sequence of each image for the extraction of a feature vector. This bispectral feature vector, which is invariant to shape translation, rotation and scale, represents a 2D planar image. However, to obtain the best performance, it should be considered certain criterion on the calculation of weights for the fuzzy weighted mean method. Therefore, a new method to calculate weights using means by differences of feature values and their variances with the maximum distance from differences of feature values. is developed. In the experiments, the recognition results with fifteen dimensional bispectral feature vectors, which are extracted from 11.808 aircraft images based on eight different styles of reference images, are compared and analyzed.

  • PDF

Feature Extraction of Shape of Image Objects in Content-based Image Retrieval (내용기반으로한 이미지 검색에서 이미지 객체들의 외형특징추출)

  • Cho, June-Suh
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.823-828
    • /
    • 2003
  • The main objective of this paper is to provide a methodology of feature extraction using shape of image objects for content-based image retrieval. The shape of most real-life objects is irregular, and hence there is no universal approach to quantify the shape of an arbitrary object. In particular. electronic catalogs contain many image objects for their products. In this paper, we perform feature extraction based on individual objects in images rather than on the whole image itself, since our method uses a shape-based approach of objects using RLC lines within an image. Experiments show that shape parameters distinctly represented image objects and provided better classification and discrimination among image objects in an image database compared to Texture.

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

A SHAPE FEATURE EXTRACTION FOR COMPLEX TOPOGRAPHICAL IMAGES

  • Kwon Yong-Il;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.575-578
    • /
    • 2005
  • Topographical images, in case of aerial or satellite images, are usually similar in colors and textures, and complex in shapes. Thus we have to use shape features of images for efficiently retrieving a query image from topographical image databases. In this paper, we propose a shape feature extraction method which is suitable for topographical images. This method, which improves the existing projection in the Cartesian coordinates, performs the projection operation in the polar coordinates. This method extracts three attributes, namely the number of region pixels, the boundary pixel length of the region from the centroid, the number of alternations between region and background, along each angular direction of the polar coordinates. It extracts the features of complex shape objects which may have holes and disconnected regions. An advantage of our method is that it is invariant to rotation/scale/translation of images. Finally we show the advantages of our method through experiments by comparing it with CSS which is one of the most successful methods in the area of shape feature extraction

  • PDF