• 제목/요약/키워드: shape based code

검색결과 254건 처리시간 0.025초

유전자 알고리즘을 사용한 공기역학적 Airfoil 형상 최적화 (A Study on Optimal Aerodynamic Shape of Airfoil using a Genetic Algorithm)

  • 정성기;도옹안호앙;이영민;제소영;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.377-380
    • /
    • 2008
  • In this study, an aerodynamic shape optimization system was developed to study the optimal shape of airfoil. The system consists of GA (Genetic Algorithm) and CFD code based on the Navier-Stokes equation. Lift-drag ratio is chosen as the object function and optimization is conducted for PARSEC airfoil with nine design variables, which is very efficient in representing the surface geometry of airfoil.

  • PDF

목적 공력특성 달성을 위한 플루트 노즐 전산설계 (COMPUTATIONAL DESIGN OF A FLUTED NOZZLE FOR ACHIEVING TARGET AERODYNAMIC PERFORMANCE)

  • 강영진;양영록;황의창;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2011
  • As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.

형태론적 체인코드 에지벡터를 이용한 핸드 제스처 시퀀스 인식 (Hand Gesture Sequence Recognition using Morphological Chain Code Edge Vector)

  • 이강호;최종호
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권4호
    • /
    • pp.85-91
    • /
    • 2004
  • 최근 들어 인간의 의지를 컴퓨터에 전달하기 위한 수단으로 컴퓨터 시각기반 방식으로 제스처를 인식하고자 하는 연구가 널리 진행되고 있다. 제스처 인식에서 가장 중요한 이슈는 알고리즘의 단순화와 처리 시간의 감소이다. 이러한 문제를 해결하기 위하여 본 연구에서는 기하학적 집합론에 근거하고 있는 수학적 형태론을 적용하였다. 본 논문에서 제안한 알고리즘의 키 아이디어는 형태론적 형상분해를 적용하여 얻은 원시형상 요소들의 중심점을 연결하는 궤적을 추적하는 것이다. 핸드 제스처 시퀀스의 중심점 궤적은 핸드 제스처의 형상에 관련된 중요한 정보를 내포하고 있다. 이러한 특징에 근거하여 본 연구에서는 원시형상 요소들의 중심점 궤적과 직접적으로 관련되는 체인코드 에지벡터로부터 형상의 특징벡터를 계산하여 핸드 제스처 시퀀스를 인식할 수 있는 알고리즘을 제안하고, 실험을 통하여 그 유용성을 증명하였다.

  • PDF

병렬기구형 틸팅 테이블 및 RAD Tool 프로그램 개발에 관한 연구 (Study on Development of Parallel-Typed Tilting Table and RAD Tool Program)

  • 김태성;박성민;원동희;이민기;박근우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.284-289
    • /
    • 2002
  • In this paper, we develop a six-axes machining center tool(MCT) and CAD/CAM system based RAD Tool Program. The MCT consists of two mechanical parts, i.e., a X-Y-Z Cartesian coordinate typed MCT and a parallel-typed tilting table. Kinematics and singularity are accomplished to design the parallel-typed tilting table, and RAD Tool Program Is developed for the six-axes MCT, which requires the commands of position as well as orientation for machining of complex shape. In RAD Tool, the CAD/CAM system has a tool path generator, NC code generator and a graphic simulator. This paper designs the parallel-typed tilting table to meet the desired specification and presents the results of CAD/CAM system based RAD Tool Program.

  • PDF

B-Rep 솔리드모델을 이용한 머시닝센터용 CAD/CAM시스템 개발(I) (Development of smart CAD/CAM system for machining center based on B-Rep solid modeling techniques(l) (A study on the B-Rep solid modeler using half edge data structure))

  • 양희구;김석일
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.150-157
    • /
    • 1996
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interfer- ence check between solids, the structural design of machine tools and robots and so on.

  • PDF

유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화 (Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method)

  • 이진학;대니 새일
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.369-378
    • /
    • 2012
  • 이 연구에서는 풍력 터빈 블레이드의 형상 최적화를 위한 직접탐색 기반의 최적화 기법을 적용하고, 최적화 기법간의 성능을 비교하여 효과적인 방법을 제안하고자 하였다. 이를 위하여 수평축 풍력 터빈의 최적설계 코드인 HARP_Opt(Horizontal Axis Rotor Performance Optimizer)을 기반으로 연간 발전량 평가 방법을 수정하고, HARP_Opt에서 적용하고 있는 기존의 유전자 알고리즘과 함께 패턴 서치 방법을 추가 적용하였다. 이를 1MW급 풍력 발전 터빈 블레이드의 단면 형상 최적 설계 문제에 적용하였으며, 기존의 유전자 알고리즘 및 마이크로 유전자 알고리즘, 그리고 패턴 서치 방법의 성능을 비교한 결과, 연간 발전량과 해의 일관성 면에 있어서는 패턴 서치 방법이 상대적으로 우수하였으며, 계산시간 측면에서는 마이크로 유전자 알고리즘이 상대적으로 우수한 것으로 분석되었다.

BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구 (BIM-Based Generation of Free-form Building Panelization Model)

  • 김양길;이윤구;함남혁;김재준
    • 한국BIM학회 논문집
    • /
    • 제12권4호
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Coincidence summing correction for a voluminous 152Eu source

  • Yoon, Eun Taek;Kang, Min Young;Kim, In Jung;Sun, Gwang Min;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1266-1270
    • /
    • 2020
  • A code is developed to correct for the coincidence summing effect in detecting a voluminous gamma source, and this code is applied to a152Eu standard source as a test case. The source is 1000 mL of liquid in a cylindrical shape. To calculate the coincidence summing effect, the cylindrical source is considered as 10(radial) × 8(height) sectional sources. For each sectional source, the peak efficiency and total efficiency are obtained by Monte Carlo simulation at each energy for 10 energies between 50 keV and 2000 keV. The efficiencies of each sector are then expressed as polynomials of gamma energy. To calculate the correction coefficients for the coincidence summing effect, the KORSUM code is used after modification. The magnitudes of correction are 4%-17% for the standard 152Eu source measured in this study. The relative deviation of 4.7% before the coincidence correction is reduced to 0.8% after the correction is applied to the efficiency based on the measured gamma line. Hence, this study has shown that a new method has been developed that is applicable for correcting the coincidence effect in a voluminous source, and the method is applied to the measured data of a standard 152Eu cylinder source.

Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.43-54
    • /
    • 2016
  • In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor cores. In addition, validation of the calculations against the $P_1$ approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • 에너지공학
    • /
    • 제13권3호
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.