DOI QR코드

DOI QR Code

Coincidence summing correction for a voluminous 152Eu source

  • Yoon, Eun Taek (Department of Nuclear Engineering, Seoul National University) ;
  • Kang, Min Young (Department of Nuclear Engineering, Seoul National University) ;
  • Kim, In Jung (Department of Nuclear Engineering, Seoul National University) ;
  • Sun, Gwang Min (Department of Nuclear Engineering, Seoul National University) ;
  • Choi, Hee-Dong (Department of Nuclear Engineering, Seoul National University)
  • 투고 : 2019.08.26
  • 심사 : 2019.11.18
  • 발행 : 2020.06.25

초록

A code is developed to correct for the coincidence summing effect in detecting a voluminous gamma source, and this code is applied to a152Eu standard source as a test case. The source is 1000 mL of liquid in a cylindrical shape. To calculate the coincidence summing effect, the cylindrical source is considered as 10(radial) × 8(height) sectional sources. For each sectional source, the peak efficiency and total efficiency are obtained by Monte Carlo simulation at each energy for 10 energies between 50 keV and 2000 keV. The efficiencies of each sector are then expressed as polynomials of gamma energy. To calculate the correction coefficients for the coincidence summing effect, the KORSUM code is used after modification. The magnitudes of correction are 4%-17% for the standard 152Eu source measured in this study. The relative deviation of 4.7% before the coincidence correction is reduced to 0.8% after the correction is applied to the efficiency based on the measured gamma line. Hence, this study has shown that a new method has been developed that is applicable for correcting the coincidence effect in a voluminous source, and the method is applied to the measured data of a standard 152Eu cylinder source.

키워드

참고문헌

  1. R. Jedlovszky, Coincidence-Summing Corrections, ICRM-S-10, 1982.
  2. D.S. Andreev, K.I. Erokhina, V.S. Zvonov, I. Kh Lemberg, Consideration of cascade transitions in determining the absolute yield of gamma rays, Instrum. Exp. Tech. 15 (1972) 1358-1360.
  3. G.J. McCallum, G.E. Coote, Influence of source-detector distance on relative intensity and angular correlation measurements with Ge(Li) spectrometers, Nucl. Instrum. Methods 130 (1975) 189-197. https://doi.org/10.1016/0029-554X(75)90173-1
  4. T.M. Semkow, G. Mehmood, P.P. Parekh, M. Virgil, Coincidence summing in gamma-ray spectroscopy, Nucl. Instrum. Methods Phys. Res. A 290 (1990) 437-444. https://doi.org/10.1016/0168-9002(90)90561-J
  5. M. Korun, R. Martincic, Coincidence summing in gamma and X-ray spectrometry, Nucl. Instrum. Methods Phys. Res. A 325 (1993) 478-484. https://doi.org/10.1016/0168-9002(93)90394-W
  6. K. Debertin U. Schotzig, Coincidence summing corrections in Ge(Li)-Spectrometry at low source-to-detector distances, Nucl. Instrum. Methods 158 (1979) 471-477. https://doi.org/10.1016/S0029-554X(79)94845-6
  7. D. Arnold, O. Sima, Total versus effective total efficiency in the computation of coincidence summing corrections in gamma-ray spectrometry of volume sources, J. Radioanal. Nucl. Chem. 248 (2) (2001) 365-370. https://doi.org/10.1023/A:1010671823736
  8. O. Sima, D. Arnold, C. Dovlete, GESPECOR: a versatile tool in gamma-ray spectrometry, J. Radioanal. Nucl. Chem. 248 (2) (2001) 359-364. https://doi.org/10.1023/A:1010619806898
  9. D. Arnold, O. Sima, Extension of the efficiency calibration of germanium detectors using the GESPECOR software, Appl. Radiat. Isot. 61 (2004) 117-121. https://doi.org/10.1016/j.apradiso.2004.03.031
  10. H. Zhu, K. Morris, W. Mueller, M. Field, R. Venkataraman, J. Lamontagne, F. Bronson, A. Berlizov, Validation of true coincidence summing correction in Genie 2000 V3.2, J. Radioanal. Nucl. Chem. 282 (2009) 205-209. https://doi.org/10.1007/s10967-009-0148-x
  11. S. Sudar, TrueCoinc, a software utility for calculation of the true coincidence correction, IAEA-Tecdoc 1275 (2002) 37-48.
  12. T. Vidmar, G. Kanisch, G. Vidmar, Calculation of true coincidence summing corrections for extended sources with EFFTRAN, Appl. Radiat. Isot. 69 (2011) 908-911. https://doi.org/10.1016/j.apradiso.2011.02.042
  13. M.C. Lepy, L. Ferreux, S. Pierre, Coincidence summing corrections applied to volume source, Appl. Radiat. Isot. 70 (2012) 2137-2140. https://doi.org/10.1016/j.apradiso.2012.02.057
  14. D. Novkovic, M. Durasevic, A. Kandic, I. Vukanac, B. Seslak, Z. Milosevic, Coincidence summing corrections for point and volume $^{152}Eu$ sources, Appl. Radiat. Isot. 107 (2016) 138-144. https://doi.org/10.1016/j.apradiso.2015.10.015
  15. M.C. Lepy, et al., Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry, Appl. Radiat. Isot. 68 (2010) 1407-1412. https://doi.org/10.1016/j.apradiso.2010.01.012
  16. M.C. Lepy, et al., Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry-part II(volume sources), Appl. Radiat. Isot. 70 (2012) 2112-2118. https://doi.org/10.1016/j.apradiso.2012.02.079
  17. MATLAB Reference Guide, The MathWorks, Inc., 1992.
  18. V.R. Vanin, R.M. de Castro, E. Browne, Table of radionuclides, CEA/LNE-LNHB, Internet information: http://www.nucleide.org/DDEP_WG/Nuclides/Eu-152_tables.pdf, 2004.
  19. C.S. Park, H.D. Choi, G.M. Sun, J.H. Whang, Status of developing HPGe $\gamma$-ray spectrum analysis code hypergam, J. Prog. Nucl. Energy 50 (2008) (2008) 389. https://doi.org/10.1016/j.pnucene.2007.11.022
  20. R. Arthur Forster, et al., MCNP version 5, Nucl. Instrum. Methods Phys. Res. B. 213 (2004) 82-86. https://doi.org/10.1016/S0168-583X(03)01538-6

피인용 문헌

  1. Peak Efficiency of NaI Detector and Coincidence Summing Factor for Different Cylindrical Sources Using Geant4 Simulation vol.121, pp.3, 2020, https://doi.org/10.1097/hp.0000000000001437
  2. Geant4 Tracks of NaI Cubic Detector Peak Efficiency, Including Coincidence Summing Correction for Rectangular Sources vol.195, pp.9, 2020, https://doi.org/10.1080/00295639.2021.1895406
  3. Re-construction of a HPGe detector precise modeling for efficiency calibration vol.180, 2022, https://doi.org/10.1016/j.apradiso.2021.110059