• Title/Summary/Keyword: shallow water front

Search Result 41, Processing Time 0.029 seconds

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.28-33
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve(SWCC) of granite and gneiss weathered soils are investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

  • PDF

Estimation of Saturation Depth by Reflecting Water-redistribution Phenomena at a Natural Slope (수분 재분포를 고려한 강우 침투 시 자연 사면에서의 포화깊이 산정)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2006
  • In Korea, most landslides occurred during the rainy season and had a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. The saturation depth was readily estimated using modified Green-Ampt model proposed by Chu et al. (Chu Model) at present. But Chu Model involves some problems for application, because water-redistribution phenomena were not effected. So the modified Chu Model (MCGAM) which reflect water redistribution phono mens was developed. The results showed that the MCGAM had a better agreement with measured volumetric water contents than existing Chu Model.

An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations (천수방정식에 대한 HLLL 근사 Riemann 해법의 적용)

  • Hwang, Seung-Yong;Lee, Sam Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.21-27
    • /
    • 2012
  • The HLLL scheme, proposed by T. Linde, determines all the wave speeds from the initial states because the middle wave is evaluated by the introduction of a generalized entropy function. The scheme is considered a genuine successor to the original HLL scheme because it is completely separated form the Roe's linearization scheme unlike the HLLE scheme and does not rely on the exact solution unlike the HLLC scheme. In this study, a numerical model was configured by the HLLL scheme with the total energy as a generalized entropy function to solve governing equations, which are the one-dimensional shallow water equations without source terms and with an additional conserved variable relating a concentration. Despite the limitations of the first order solutions, results to three cases with the exact solutions were generally accurate. The HLLL scheme appeared to be superior in comparison with the other HLL-type schemes. In particular, the scheme gave fairly accurate results in capturing the front of wetting and drying. However, it revealed shortcomings of more time-consuming calculations compared to the other schemes.

Environmental Factors and Catch Fluctuation of Set Net Grounds in the Coastal Waters of Yeosu (여수연안 정치망 어장의 환경요인과 어황 변동에 관한 연구)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.94-108
    • /
    • 1993
  • In order to investigate the relation between the environmental properties and catch fluctuation of set net fishing ground located in the coastal waters of Yeosu, oceanographic observation and catches on the grounds were carried out from Jan. to Dec. in 1990 and 1992. The results obtained are summarized as follows; 1) Because of the surveyed area is a costal shallow water, the fishing ground was influenced largely by atmospheric phenomena such as air temperature. precipitation. etc. and so showed large variations in temperature and salinity yearly. The inner water flowed out mainly between Yeosu ad Namhe-do, and then through Kumo-do between Dolsan-do and Kumo-do. On the other hand, off shore water was supplied into the fishing ground from the vicinity of Sori-do and Yokchi-do. thus the fishing ground was occupied usually by various sources of water. 2) The water mass in the fishing ground were divided into the inner water(29.0~30.6$\textperthousand$) and the mixed water(31,7~32.2$\textperthousand$) and off shore water(32.3~32.8$\textperthousand$) accourding to the distribution of salinity from T-S diagram plotted all salinity data observed in 1990 and 1992. In summer the inner and mixing water which was formed by river flowed southerly and spread south-easterly in the vicinity of Kumo-do. The off shore water which supplied from the vicinity of Sori-do and Yokchi-do and inner water formed the thermal front and halo front in summer. 3) The fishes caught by the set net were arranged in the order of catch amounts as follows: Spanish mackerel>Horse mackerel >Hair tail>Common mackerel> Sardine> Anchovy. The Catches of anchovy and sardine were high in April to May and those of hair tail and horse mackerel in July to September, but spanish mackerel were caught during the whole period of fishing. When inner water and mixing water appeared respectively and inner water and mixing water speared together in the set net fishing ground, the set net showed a high catch.

  • PDF

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

A Study of Stability Analysis on Unsaturated Soil Slopes Considering Rainfall (강우를 고려한 불포화 토사사면의 안정해석 연구)

  • Kim, Khi-Woong;Kim, Bum-Joo;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common in Korea. This study examines an infinite slope analysis to estimate the influence of infiltration on surficial stability of slopes by the limit equilibrium method. Approximate method which is based on the Green-Ampt model have been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods. Pradel & Raad method which is devised to predict the depth of wetting front to decomposed granite soil slopes having measured soil-water characteristic curves. To compare the results with those obtained from the Pradel & Raad method, a series of numerical analysis using SEEP/W were carried out. It was found that the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of decomposed granite soils was found to be a proper analysis for shallow slope failures due to rainfall.

  • PDF

Comparison of Methods to Calculate Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수계수 계산 방법의 비교)

  • Suh, Kyung-Duck;Ji, Chang-Hwan;Kim, Yeul-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.506-509
    • /
    • 2008
  • Mathematical models have been developed to calculate hydrodynamic characteristics of perforated-wall structures. Most of the models separate the fluid regions into front and back of the wall, assume the solution in each region, and calculate the solution by using the matching condition at the wall. The matching condition involves the permeability parameter, which can be calculated by the methods proposed by Mei et al. or Sollitt and Cross. In this study, we compare these two methods. The former is advantageous because all the related variables are known, but it gives wrong result in the limit of long waves, i.e. zero transmission and perfect reflection of very long waves. In deep water, the latter predicts smaller transmission and larger reflection than the former, and vice versa in shallow water. In the latter method, the friction coefficient decreases as the wall thickness or the porosity of the wall increases.

  • PDF

A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments (토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구)

  • Suk, Jae-wook;Park, Sung-Yong;Na, Geon-ha;Kang, Hyo-Sub
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.489-499
    • /
    • 2018
  • A flume experiments was used to study the characteristics of the surface displacements and volumetric water contents (VWC) during torrential rain. The surface displacement and VWC of the granite weathered soil were measured for rainfall intensity (100, 200 mm/hr) and initial ground condition (VWC 7, 14, 26%). The test processes were also recorded by video cameras. According to the test results, The shallow failure is classified into three types: retrogressive failure, progressive failure and defined failure. In the case of retrogressive failure and progressive failure, relatively large damage could occur due to the feature that soil is deposited to the bottom of the slope. the shallow failure occurred when the VWC reached a certain value regardless of the initial soil condition. It was found that the shallow failure can be predicted through the increase patton of the VWC under the condition of the ground dry condition (VWC 7%) and the natural condition (VWC 14%). For high rainfall intensity, progressive failure predominated, and rainfall intensity above a certain level did not affect wetting front transition.

Application of adaptive mesh refinement technique on digital surface model-based urban flood simulation

  • Dasallas, Lea;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.122-122
    • /
    • 2020
  • Urban flood simulation plays a vital role in national flood early warning, prevention and mitigation. In recent studies on 2-dimensional flood modeling, the integrated run-off inundation model is gaining grounds due to its ability to perform in greater computational efficiency. The adaptive quadtree shallow water numerical technique used in this model implements the adaptive mesh refinement (AMR) in this simulation, a procedure in which the grid resolution is refined automatically following the flood flow. The method discounts the necessity to create a whole domain mesh over a complex catchment area, which is one of the most time-consuming steps in flood simulation. This research applies the dynamic grid refinement method in simulating the recent extreme flood events in Metro Manila, Philippines. The rainfall events utilized were during Typhoon Ketsana 2009, and Southwest monsoon surges in 2012 and 2013. In order to much more visualize the urban flooding that incorporates the flow within buildings and high-elevation areas, Digital Surface Model (DSM) resolution of 5m was used in representing the ground elevation. Results were calibrated through the flood point validation data and compared to the present flood hazard maps used for policy making by the national government agency. The accuracy and efficiency of the method provides a strong front in making it commendable to use for early warning and flood inundation analysis for future similar flood events.

  • PDF

Applicability of CADMAS-SURF Code for the Variation of Water Level and Velocity due to Bores (CADMAS-SURF에 의한 단파의 수위 및 유속변화에 대한 예측정도의 검토)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Hwang, Yong-Tae;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.52-60
    • /
    • 2008
  • This study investigates the applicability of CADMAS-SURF (Super Roller Flume for Computer Aided Design of a MArtime Structure) code basal on the Navier-Stokes solver to predict bore phenomena. The time variation of ware levels and velocities due to the bore propagation were computed for the different bore strength conditions. In order to verify the numerical results by CADMAS-SURF, laboratory experiments were also performed, using the DPIV and LDV measuring system. The numerical results were compared to the experimental data and the analytical predictions by the NSC method basal on fully nonlinear shallow-water theory by the method of characteristics. It appears that the CADMAS-SURF slightly overestimated the water-surface level measured by the laboratory experiments and its discrepancy becomes prominent as the bore strength increases. The predicted propagation speed for a bore was also slaver than that by the experiment and NSC method. However, the temporal variations in velocities were in relatively good agreement with the experimental data for all cases, except for overshooting and undershooting in the front face of a bore, which may be derived from the numerical instability. Further, CADMAS-SURF successfully simulated the decrease in the water level and velocity caused by the effects of negative waves reflected from the upstream end wall.