• Title/Summary/Keyword: shallow water equation

Search Result 148, Processing Time 0.031 seconds

THE NUMERICAL SOLUTION OF SHALLOW WATER EQUATION BY MOVING MESH METHODS

  • Shin, Suyeon;Hwang, Woonjae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.563-577
    • /
    • 2012
  • This paper presents a moving mesh method for solving the hyperbolic conservation laws. Moving mesh method consists of two independent parts: PDE evolution and mesh- redistribution. We compute numerical solution of shallow water equation by using moving mesh methods. In comparison with computations on a fixed grid, the moving mesh method appears more accurate resolution of discontinuities.

A Conservative USCIP Simulation Method for Shallow Water (물 표면 시뮬레이션을 위한 보존적 USCIP법)

  • Jeon, Sejong;Song, Oh-young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • We propose a physical simulation method based on the shallow water equation(SWE) to represent water surface effectively. In this paper, the water which can be represented has a much larger width compared to the depth does not have a large vertical direction flow. In order to calculate the water flow efficiently, we start with the shallow water equation as the governing equation, which is a simplified version of the Navier-Stokes equation. In order to numerically calculate the advection term of the SWE, we introduce a new conservtive USCIP(CUSCIP) method which improves the Constrained Interpolation Profile (CIP) method to preserve the physical quantity while increasing the numerical accuracy. The proposed method is based on Kim et. al.'s Unsplit Semi-lagrangian CIP[9], and calculates advection term with additional constraints on term that consider integral values. The experimental results show that the CUSCIP method is robust to the loss of physical quantity due to numerical dissipation, which improves wave detail and persistence.

TRAVELING WAVE SOLUTIONS FOR A SHALLOW WATER MODEL

  • Jung, Soyeun
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.649-654
    • /
    • 2017
  • In this note, we seek traveling wave solutions of a shallow water model in a one dimensional space by a simple but rigorous calculation. From the profile equation of traveling wave solutions, we need to investigate the phase portrait of a one dimensional ordinary differential equation $\tilde{u}^{\prime}=F(\tilde{u})$ connecting two end states of the traveling wave solution.

The Calculation of Seawater Exchange Rate in a Port by Numerical Analysis (수치해석을 이용한 항만의 해수교환율 산정)

  • Kim, Hyung-Jun;Kang, Gyu-Young;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.237-240
    • /
    • 2008
  • Numerical Analysis for exchanging seawater experiment is carried out in Do-Jang fish port. The change of tidal velocity and water level is derived by the two-dimensional nonlinear shallow-water numerical model. To calculate exchange rate of seawater with the change of tidal velocity and water level, a two-dimensional numerical model is employed which governing equations are Fokker-Plank equations. The calculated exchange rates of each time are described in tables and figures.

  • PDF

Characteristics of Finite Difference Methods for the Shallow Water Equation (천수방정식의 유한차분 특성)

  • Lee, Kil Seong;Kang, Ju Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.41-52
    • /
    • 1989
  • Numerical characteristics for the shallow water equation are analyzed with ADI, Hansen, Heaps, Richtmyer and MacCormack schemes. Stability, CPU time and accuracy are investigated for the linear model which has analytic solutions and circulation is simulated for the nonlinear model. The results show that ADI method has some defects in CPU time and accuracy for the computation of velocity. But ADI method simulates circulation well and has the largest stability region. Richtmyer scheme is the best among the other explicit schemes. Effective viscosity term is found to be essential for numerical experiments of the shallow water equation.

  • PDF

TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.383-395
    • /
    • 2010
  • In the present paper, we construct the traveling wave solutions involving parameters of nonlinear evolution equations in the mathematical physics via the (3+1)- dimensional potential- YTSF equation, the (3+1)- dimensional generalized shallow water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equation by using a simple method which is called the ($\frac{G'}{G}$)- expansion method, where $G\;=\;G(\xi)$ satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the travelling waves. The travelling wave solutions are expressed by hyperbolic, trigonometric and rational functions.

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

Practical Dispersion-Correction Scheme for Linear Shallow-Water Equations to Simulate the Propagation of Tsunamis (지진해일 전파모의를 위한 선형 천수방정식을 이용한 실용적인 분산보정기법)

  • Cho, Yong-Sik;Sohn, Dae-Hee;Ha, Tae-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1935-1939
    • /
    • 2006
  • In this study, the new dispersion-correction terms are added to leap-frog finite difference scheme for the linear shallow-water equations with the purpose of considering the dispersion effects such as linear Boussinesq equations for the propagation of tsunamis. And, dispersion-correction factor is determined to mimic the frequency dispersion of the linear Boussinesq equations. The numerical model developed in this study is tested to the problem that initial free surface displacement is a Gaussian hump over a constant water depth, and the results from the numerical model are compared with analytical solutions. The results by present numerical model are accurate in comparison with the past models.

  • PDF

Development of 2D Finite Element Model for the Analysis of Shallow Water Flow (천수흐름 해석을 위한 2차원 유한요소모형의 개발)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.199-209
    • /
    • 2010
  • A finite element model for analyzing surface water flow was developed. Shallow water equation was discretized and solved by Galerkin and Newton-Raphson method. Triangular or rectangular elements can be mixed together to construct meshes. The algebraic equation was solved by frontal method which is very efficient in finite element problem. The developed model was applied to rectangular meandering channel with two bends and transverse velocities and water depth distributions were examined. High velocity was located near the inner bank at the apexes of the bends and velocity distribution was symmetrical about the centerline at the midsection of two bend and super elevation also occurred. Simulation results showed very good agreement with measured data. Another numerical simulation was carried out in mild, steep, adverse and abrupt bottom change slope and channels with weir. 12 water surface profiles of gradually varied flow were correct in terms of hydraulic interpretation.

Wave Transformation with Wave-Current Interaction in Shallow Water (천해역(淺海域)에서 파(波)와 흐름의 상호작용(相互作用)에 의한 파랑변형(波浪變形))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.77-89
    • /
    • 1991
  • Based on Boussinesq equation, the parabolic approximation equation is used to analyse the propagation of shallow water waves with currents over slowly varying depth. Rip currents (jet-like) occur mainly in shallow waters where the Ursell parameter significatly exceeds the range of application of Stokes wave theory. We employ the nonlinear parabolic approximation equation which is valid for waves of large Ursell parameters and small scale currents. Two types of currents are considered; relatively strong and relatively weak currents. The wave propagating over rip currents on a sloping bottom experiences a shoaling due to the variations of depth and current velocity as well as refraction and diffraction due to the vorticity of currents. Numerical analyses for a nonlinear theory are valid before the breaking point.

  • PDF