• Title/Summary/Keyword: shallow landslide

Search Result 47, Processing Time 0.031 seconds

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Vegetation Succession and Rate of Topsoil Development on Shallow Landslide Scars of Sedimentary Rock Slope Covered by Volcanic Ash and Pumice, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Kim, Suk-Woo;Jang, Su-Jin;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • In this study, vegetation succession and the rate of consequent topsoil development were investigated in shallow landslide scars of sedimentary rock slopes covered by volcanic ashes and pumice in Kagoshima prefecture, Japan. Seven shallow landslide scars of different ages were selected as study areas. In the initial period after the occurrence of a shallow landslide, deciduous broad-leaved trees such as Mallotus japonicus or Callicarpa mollis were occupied in the areas. Approximately 30 years after the landslide, evergreen broad-leaved trees such as Cinnamomum japonicum invaded in the areas, already existed present deciduous broad-leaved trees. After 50 years, the summit of the canopy comprised evergreen broad-leaved trees such as Castanopsis cuspidata var. sieboldii and Machilus thunbergii. Moreover, the diversity of vegetation invading the site reached the maximum after 15 years, followed by a decrease and stability in the number of trees. The total basal areas under vegetation increased with time. It was concluded that the vegetation community reaches the climax stage approximately 50 years after the occurrence of a shallow landslide in the study areas, in terms of the Fisher-Williams index of diversity (${\alpha}$) and the prevalence of evergreen broad-leaved trees. Moreover, according to the results of topsoil measurement in the study areas, the topsoil was formed at the rate of 0.31 cm/year. The development of topsoil usually functions to improve the multi-faceted functions of a forest. However, when the increased depth of topsoil exceeds the stability threshold, the conditions for a shallow landslide occurrence are satisfied. Therefore, we indicated to control the depth of topsoil and strengthen its resistance by forest management in order to restrain the occurrence of shallow landslides.

Modeling of shallow landslides in an unsaturated soil slope using a coupled model

  • Kim, Yongmin;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.353-370
    • /
    • 2017
  • This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.

Rainfall-induced shallow landslide prediction considering the influence of 1D and 3D subsurface flows

  • Viet, Tran The;Lee, Giha;An, Hyunuk;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.260-260
    • /
    • 2017
  • This study aims to compare the performance of TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability model) and TiVaSS (Time-variant Slope Stability model) in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. The present study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( index), which was developed for addressing point-like landslide locations. In addition, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models have characteristics that are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30% to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

  • PDF

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

Application of a Physically Based Model to Shallow landsliding (천층(淺層) 산사태(山沙汰) 발생에서의 물리 모델의 적용)

  • Kim, Je-Su;Kim, Nam-Choon;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.62-69
    • /
    • 2000
  • Topography influences shallow landslide initiation through both concentration of subsurface flow and the gradient on slope stability. A model for the topographic influence on shallow landslide initiation developed by Mongomerry et al (1994) is applied to 24 places with similar terrain and subsurface flow. The criterion of landslide prone areas developed by Korea Forestry Administration (1998) is likely to misinterpreted under the condition of heavy rainfall. Soil saturation can be predicted by this model. This relative soil saturation can be used to analyze the stability of each topographic point in the case of cohesionless soils with spatially constant thickness and saturated conductivity. The three different stages of steady state rainfall predicting to cause instability in each topographic points provide a good measure of shallow landsliding possibility.

  • PDF

Numerical Simulation of Subaerial and Submarine Landslides Using the Finite Volume Method in the Shallow Water Equations with (b, s) Coordinate ((b, s) 좌표로 표현된 천수방정식에 유한체적법을 사용하여 해상 및 해저 산사태 수치모의)

  • Pham, Van Khoi;Lee, Changhoon;Vu, Van Nghi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2019
  • A model of landslides is developed using the shallow water equations to simulate time-dependent performance of landslides. The shallow water equations are derived using the (b, s) coordinate system which can be applied in both river and ocean. The finite volume scheme employing the HLL approximate Riemann solver and the total variation diminishing (TVD) limiter is applied to deal with the numerical discontinuities occurring in landslides. For dam-break water flow and debris flow, numerical results are compared with analytical solutions and experimental data and good agreements are observed. The developed landslide model is successfully applied to predict subaerial and submarine landslides. It is found that the subaerial landslide propagates faster than the submarine landslide and the speed of propagation becomes faster with steeper bottom slope and less bottom roughness.

Spatial Distribution and Casual Causes of Shallow Landslides in Jinbu Area of Korea

  • Park, Jin Woo;Choi, Byoung Koo;Kim, Myung Hwan;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In temperate monsoon regions, extensive shallow landslides triggered by heavy rainfall are recurrent phenomena in mountainous areas. 1,357 landslides over Jinbu area, Korea that totaled 127 km2 were identified from aerial photographs and field survey. We examined characteristics of rainfall-induced shallow landslides and casual factors affecting landslide distribution with respect to topographic and forest settings, and land use. Most landslides occurred in the study area were the results of a complex combination of precondition, preparatory factors and triggering factors. Cumulative rainfall and high intensity rainfall during short period of time made the study area very sensitive to landslides and played as catalysts to enable other factors including topographic and forest settings, and land use to act more effectively. In addition, some landslides at lower elevation involved channel incision or bank erosion influenced by land use changes such as deforestation and intensification of agriculture surrounding riparian forests or hillslopes. The results suggest that most of landslide were triggered by heavy rainstorms while topographic, forest settings, and land use affected landslide distribution occurred in the study area.

The July 2, 2017, Lantian landslide in Leibo, China: mechanisms and mitigation measures

  • He, Kun;Ma, Guotao;Hu, Xiewen;Liu, Bo;Han, Mei
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • Landslides triggered by the combination of heavy precipitation and anthropological disturbance in hilly areas cause severe damage to human lives, properties, and infrastructure constructions. A comprehensive investigation of the influencing factors and failure mechanisms of landslides are significant for disaster mitigation and prevention. This paper utilized the combination of detailed geological investigation, physical experimental testing as well as numerical modelling to determine the failure mechanism, and proposed a countermeasures of the Lantian landslide occurred on 2, July 2017. The results reveal that the Lantian landslide is a catastrophic reactivated slide which occurred in an active tectonic region in Southwest China. Because of the unique geological settings, the fully to highly weathered basalts in the study area with well-developed fractures favored the rainwater infiltration, which is the beneficial to slide reactivation. Engineering excavation and heavy precipitation are the main triggering factors to activate the slide motion. Two failure stages have been identified in the landslide. The first phase involves a shallow mass collapse originated at the upper slopes, which extends from the road to platform at rear part, which is triggered by excavation in the landslide region. Subjected to the following prolonged rainfall from 19 June to 2 July, 2017, the pore water pressure of the slope continually increased, and the groundwater table successively rise, resulting in a significant decrease of soil strength which leads to successive large-scale deep slide. Thereinto, the shallow collapse played a significant role in the formation of the deep slide. Based on the formation mechanisms of the landslide, detailed engineering mitigation measures, involving slope cutting, anchor cable frame, shotcrete and anchorage, retaining wall and intercepting ditch were suggested to reduce the future failure risk of the landslide.

Rainfall Intensity-Duration Thresholds for the Initiation of a Shallow Landslide in South Korea (우리나라에 있어서 산사태 유발강우의 강도-지속시간 한계)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Min-Seok;Kim, Min-Sik;Kim, Jin-Hak;Lee, Dong-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.463-466
    • /
    • 2013
  • We examined relationship between rainfall and triggering of shallow landslides in South Korea, based on hourly rainfall data for 478 shallow landslides during 1963-2012. Rainfall intensity(I) and duration(D) relationship was analyzed to obtain the I-D threshold for the initiation of a shallow landslide using the quantile regression analysis. The I-D threshold equation from in this study is: $I=9.64D^{-0.27}$($4{\leq}D{\leq}76$), where I and D are expressed in millimeters per hour and hours, respectively. In addition, rainfall criteria were proposed to predict the potential to cause landslides, based on values of I-D and cumulative rainfall derived from quantile regression analysis. Our findings may provide essential data and important evidences for the improvement of landslide warning and evacuation system.