• 제목/요약/키워드: shaking-table test

검색결과 454건 처리시간 0.025초

지하철 진동에 대한 철골건물 기초진동 절연장치의 개발 및 진동대 실험 (Development and Shaking Table Tests of a Base Isolator for Controling Subway Train-Induced Vibration of a Steel Building)

  • 김진구;송영훈;권형오;허영
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.789-796
    • /
    • 1997
  • In this study a conventional rubber mount and a new form of base isolator made of steel spring coated with natural and articial rubber were manufactured and tested on a shaking table to investigate the capacity of reducing the vertical vibration of a building induced by subway train. The model structure used in the test is a 1/4 scaled steel structure, and a white noise input and train vibration records were used to check the effectiveness of the isolators. According to the results all three types of isolators turned out to perform effectively in reducing the acceleration and the natural rubber-coated one is ranked best among the isolators. However the vertical displacement of the model is increased due to the instolation of the bearings, and the safty against the lateral load induced by earthquake ground motion should be provided to be able to apply the system to the real buildings.

  • PDF

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

Earthquake Simulation Tests of a 1 :5 Scale 3-Story Masonry-Infilled Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.153-164
    • /
    • 1999
  • The objective of this research is to observe the actual response of a low-rise nonseismic moment-resisting masonry-infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. The reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N2IE component earthquake ground motion, whose peak ground acceleration(PGA) was modified to 0.12g, 0.2g, 0.3g, and 0.4g. The g1oba1 behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of the structure were measured. Before and after each earthquake simulation test, free vibration tests and white noise tests were performed to find the changes in the natural period of the model. When the results of the masonry-infilled frame are compared with those of the bare frame, it can be recognized that masonry infills contribute to the large increase in the stiffness and strength of the g1oba1 structure whereas it also accompanies the increase of earthquake inertia forces. However, it is judged that masonry infills may be beneficial to the performance of the structure since the rate of increase in strength appears to be greater than that of the induced earthquake inertia forces.

  • PDF

초고층 건물의 양방향 풍응답 제어를 위한 액체댐퍼 실험 (Experiment of a Liquid Damper Controlling Bi-directional Wind Responses of a Tall Building)

  • 이혜리;민경원
    • 한국소음진동공학회논문집
    • /
    • 제20권3호
    • /
    • pp.287-295
    • /
    • 2010
  • This study deals with the design of a bi-directional damper using a tuned liquid damper(TLD) and a tuned liquid column damper(TLCD) for a SDOF building. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with a single damper. The damper used in this study behaves as both a TLCD in a specific translational direction and a TLD in the other orthogonal direction. This paper presents experimental verification to confirm its control performance. First, shaking table test is carried out to investigate reducing responses by the damper. Control performance of the damper is expressed by the transfer function from shaking table accelerations to SDOF building ones. Testing results show that the damper reduced bi-directional responses of a SDOF building. Also, it reduced torsion responses.

모드 특성을 이용한 건축 구조물의 강성 및 감쇠 행렬식별 (Identification of Stiffness and Damping Matrix of Building Structures using Modal Characteristics)

  • 강경수
    • 한국지진공학회논문집
    • /
    • 제8권2호
    • /
    • pp.45-53
    • /
    • 2004
  • 본 연구에서는 자유진동, 조화하중, 그리고 백색잡음실험을 통해 얻어지는 진동수, 감쇠비, 모드 벡타와 같은 구조물의 모드정보를 이용하여 강성행렬과 감쇠행렬을 구성하였다. 입력신호로는 지진하중을 모사 하는 바닥판 가속도를 이용하였고, 출력신호는 각층 절대가속도를 사용하였다. 각각의 실험에서 얻어지는 구조물 모드정보의 제한조건과 그에 따른 시스템 식별 모델들의 특성을 비교하였다. 본 연구의 결과는 진동대 실험을 위한 기초적인 동적 실험 및 분석에 이용될 수 있을 것으로 판단된다.

진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가 (In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests)

  • 정재욱;하정곤;함대기;김민규
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.

원전 전기캐비넷의 지진취약도 재평가를 위한 진동대 실험 (A Shaking Table Test for an Re-evaluation of Seismic Fragility of Electrical Cabinet in NPP)

  • 김민규;최인길
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2011
  • 본 연구에서는 원자력발전소의 주요 설비중의 하나인 전기설비를 대상으로 지진취약도 재평가를 위한 진동대 실험을 수행하였다. 원자력발전소 내에는 많은 전기설비들이 설치되어 있으며, 이러한 전기설비의 손상은 전기설비 자체의 손상에서 그치는 것이 아니고 발전소 전체의 안전성에 큰 영향을 미칠 수 있다. 따라서 원자력발전소의 확률론적 지진안전성 평가에서는 주요 전기설비에 대한 지진취약도 결과를 활용한 평가를 수행하고 있다. 본 연구에서는 기존의 확률론적 지진안전성 평가에서 사용하고 있는 전기설비의 지진취약도 값에 대한 재평가를 위하여 원자력발전소에서 사용하고 있는 주요 기기에 대한 진동대 실험을 수행하였다. 평가대상 전기설비로는 480V MCC를 선정하였으며, 진동대 실험을 위하여 NRC 설계지진, 등재해도 스펙트럼에 의한 인공지진 그리고 PAB165'에서의 층응답스펙트럼을 이용한 인공지진의 3가지 지진파를 이용하였다. 설계지진동 수준인 최대지반가속도 0.2g부터 단계적으로 입력수준을 증가시키면서 실험을 수행하였다. NUREG/CR-5203에서 제시하고 있는 방법에 의거하여 캐비넷에서의 증폭비를 비교하였으며, EPRI TR-103959의 방법으로 취약도 평가를 수행하여 기존의 확률론적 지진안전성 평가에서 사용하고 있는 지진취약도 결과와 비교하였다. 결론적으로 기존의 보고서에서 제시하고 있는 취약도 결과가 다소 보수적으로 평가하고 있음을 알 수 있었다.

가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험 (Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice)

  • 성한석;안성룡;박시영;강현구
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

Seismic analysis of a masonry cross vault through shaking table tests: the case study of the Dey Mosque in Algiers

  • Rossi, Michela;Calderini, Chiara;Roselli, Ivan;Mongelli, Marialuisa;De Canio, Gerardo;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.57-72
    • /
    • 2020
  • This paper presents the results of a monodirectional shaking table test on a full-scale unreinforced masonry cross vault characterized by asymmetric boundary conditions. The specimen represents a vault of the mosque of Dey in Algiers (Algeria), reproducing in detail the mechanical characteristics of masonry, and the constructive details including the presence of some peculiar wooden logs placed within the vault's abutments. The vault was tested with and without the presence of two steel bars which connect two opposite sides of the vault. The dynamic behaviour of both the vault's configurations were studied by using an incremental dynamic analysis up to the collapse of the vault without the steel bars. The use of an innovative high-resolution 3D optical system allowed measure displacement data of the cross vault during the shake table tests. The experimental results were analysed in terms of evolution of damage mechanisms, and in-plane and out-of-plane deformations. Moreover, the dynamic properties of the structure were investigated by means of an experimental modal analysis.

진동대 실험을 이용한 게비온-식생토낭 옹벽 시스템의 동적주동토압 산정 (Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test)

  • 김다빈;신은철;박정준
    • 한국지반환경공학회 논문집
    • /
    • 제20권12호
    • /
    • pp.15-26
    • /
    • 2019
  • 본 연구에서는 게비온-식생토낭 옹벽에 대한 동적 특성을 평가하기 위해서 실대형 진동대 실험 시 토조 내부에 포설되는 흙과 식생토낭, 연결재, 게비온 등의 전단특성을 규명하고, 이 결과를 이용하여 실대형 진동대 실험을 수행하였다. 또한, 식생토낭벽체의 기울기, 지반가속도 등의 실험조건으로 실대형 진동대 실험을 실시하여 가속도, 변위, 토압에 대한 게비온-식생토낭 옹벽시스템의 동적 특성을 분석하였다. 결과, 1:0.3 기울기에서는 지진가속도가 $(0.154-0.44)g_n$일 때, 동적주동토압의 작용점은 저면으로 부터 (0.376-0.377)H인 것으로 나타났다. 1:1 기울기에서는 (0.389-0.393)H으로 나타나 기울기가 완만할수록 동적주동토압의 작용점은 높은 것으로 나타났다.