• 제목/요약/키워드: shaft diameter

검색결과 272건 처리시간 0.034초

축류형 터빈에서 정${\cdot}$동익 축방향 거리의 변화에 대한 실험적 연구 (An Experimental Study of 3-D Axial Type Turbine Performance with Various Axial Gaps between the Rotor and Stator)

  • 김종호;김은종;조수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.541-544
    • /
    • 2002
  • The turbine performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3/min\;at\;290mmAq$ static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to two times of stator axial chord length, and performance curves are obtained with 7 different axial gaps. The efficiency is dropped about $5{\%}$ of its highest value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.0-1.5Cx.

  • PDF

대형 바렛말뚝과 현장타설말뚝의 하중전이특성 파악을 위한 재하시험 (Pile Load test on a Large Barrette Pile and a Bored Pile for the Identification of the Load Transfer Characteristics)

  • 한성길;박종관
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.493-498
    • /
    • 2006
  • In this study, two large pile load tests were performed in the deep sand gravel deposit of Nakdong river basin so that the characteristics of the load transfer was identified. The fully instrumented rectangular barrette pile in the size of $1.5\times3.0m$ and the circular bored pile of the diameter 1.5 m were placed into the ground below 50 m. Under the applied loads of 2,400 tonf and 4,000 tonf, the test results of the load transfer showed the portion of 83% and 93% of the applied loads on the barrette pile and the bored pile, respectively, were supported by the skin friction along the pile shaft. It was revealed that the most of these skin friction mobilized in sand layer underlying clay layer having N-value more than 30 and that the friction per unit area of the bored pile was larger than the friction of barrette pile. However, if embedded in the stiff sand graval layer, the both piles were proven to be sufficient for using as the friction piles.

고속 회전축 냉각용 루우프 히트파이프 열교환기의 응축열전달 특성에 관한 연구 (A Study on the Condensation Heat Transfer Characteristics of a Loop Heat Pipe Heat Exchanger for High Speed Rotary Shaft Cooling)

  • 조동현;이종선
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.147-152
    • /
    • 2017
  • In the present study, we used a loop thermosyphon heat exchanger consisting of condensers with internal fins and external plate fins which are 480 mm wide, 68 mm long, and 1,000 mm high. The heat transfer pipes in the heat exchanger were 15 mm in diameter and 1,000 mm in length, and 98 heat transfer pipes were installed in the heat exchanger. According to the experimental results, as the spaces between the internal discontinuous pins decreased, the frequency of pressure drops increased and changes in temperature at the outlet of the condenser were shown to be a little smaller. Therefore, we can see that as the spaces between internal discontinuous pins decreased, the heat transfer performance increased. For the loop heat pipe heat exchanger consisting of a condenser with internal and plate fins, as the temperature of the air flowing into the condenser increased, the condensation heat transfer rate also increased, and as the condenser refrigerant inflow temperature increased, the condensation heat transfer rate increased as well.

정압형 레디얼 공기베어링 개발 및 설계인자 영향 평가 (Development of a Static Pressure Radial Air Bearing and Estimate of Design Variables)

  • 김옥현;이규호
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.502-506
    • /
    • 2012
  • Air bearing is characterized by its extremely low friction and cleanliness such that it is widely used especially for spindles with ultra-high rotational speed at several tens of thousands rpm. This paper contributes to design of a static radial air bearing suggesting numerical analysis to anticipate its performances. The numerical analysis is an iteration method based on finite difference formulation of the Reynolds equation. A prototype air bearing has been designed and manufactured. Its load capacity has been measured and compared with the numerical solutions. The result shows good consistency between the experiment and theory, which informs that the numerical analysis can be used as an useful tool to anticipate the performances. Effects of design variables on the bearing performance have been examined by Taguchi's experimental methods using orthogonal array. Number of holes for supplying pressurized air, clearance between shaft and bearing, the hole diameter and bearing length are chosen for the design variables. The result shows that the clearance and the bearing length are the most influential variables while the others can be considered as almost negligible.

자탈형 콤바인 탈곡부 설계요인(設計要因)의 적정화(適正化)를 위한 연구(I) -급동축(扱胴軸) 토오크 파형의 추정(推定)- (Optimizing the design factors of the head-fed type combine(I) -Estimation of the threshing drum torque curve-)

  • 남상일;정창주;호소카와 아키라
    • Journal of Biosystems Engineering
    • /
    • 제12권3호
    • /
    • pp.42-49
    • /
    • 1987
  • The threshing action of the head-fed type threshing unit occurs mainly by the impact between threshing tooth and grains. It may be therefore the most fundamental step to calculate the time and order of the occurrance of impact by the tooth for predicting the performance of threshing unit. The threshing teeth arrangement was defined by length and diameter of threshing dram, number of spiral arrays, number of threshing teeth by kind per one spiral array, number of windings of spiral array around the threshing drum, delay angle of impact line. The linear equations for locus of left and right margin of paddy bundle, spiral array, impact line on the development figure of the threshing drum were expressed by fastors of the threshing teeth arrangement. In the computer program, the teeth which inflict impact were searched successively along the impact line. Searching range and impact condition were defined by the relation between four linear equations. If the impacting tooth was found, time and the kind of threshing tooth was derived from the coordinate of the threshing tooth. At this time the unit torque curve was accumulated on the array of computer memory. At last the completed torque curve of threshing drum shaft was described on the computer screen. Remarkably the peack valae and fluctuation of torque curve was decreased by adopting the delay angle of impact line.

  • PDF

저소음 대형 캐비테이션 터널 구동 펌프 개발 (Development of the Driving Pump for the Low Noise Large Cavitation Tunnel)

  • 안종우;김건도;김기섭;이진태;설한신
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.370-378
    • /
    • 2008
  • It is reported to develop the driving pump for the Low Noise Large Cavitation Tunnel(LOCAT) which is under construction at Maritime & Ocean Engineering Research Institute(MOERI). For low background noise condition of the LOCAT, it is crucial not only the best pump efficiency but also no cavity occurrence at any operating conditions. Design condition of the pump is determined by considering the required pump headrise, flow quantity, shaft rotation velocity and pump diameter. Performance analysis of the pump is conducted using commercial CFD codes ($BladeGen^+$, CFX-10), and the predicted results are verified by a series of model tests. Cavity was not observed at any operating condition in the model test, which were conducted at the midium cavitation tunnel of MOERI. The optimum pump for LOCAT, named as LP-11, was successfully developed through a series of pump design processes composed of blade design, performance analysis and model test.

수직형 저널 베어링에서 preload 변화에 따른 베어링 패드 온도 변화 (Bearing Pad Temperature Change Depending on the Preload of Vertical Journal Guide Bearing)

  • 김준성;김두영;김동관;박상호
    • 한국유체기계학회 논문집
    • /
    • 제12권6호
    • /
    • pp.33-40
    • /
    • 2009
  • The temperature of vertical pump bearing metal in the pumped storage power plant has been high enough to shutdown the unit. Attempts such as decreasing the oil supply temperature, increasing the bearing oil gap etc. were performed to resolve the problem, but the issue was not resolved. Finally, the high bearing metal temperature was corrected by adjusting the bearing preload. The preload is formed by the oil wedge between the journal surface and bearing pad surface and the degree of preload is determined by the machined radial clearance, assembled radial clearance, rotor journal diameter etc. This paper focuses on the analysis of the preload depending on the bearing parameters and the result of the modification of the bearing following the analysis. The bearing metal temperature dropped as much as $20^{\circ}C$ which was similar as expected by software calculation. But the shaft vibration could increase when the assembled radial clearance is excessive. So, the adjustment of the bearing preload for the tilting pad type journal bearing should be carefully performed.

삼축압축시험을 통한 암반에 근입된 현장타설말뚝의 선단 하중전이곡선 산정 (Evaluation of the q-w Curve on Rock-Socketed Drilled Shafts by Triaxial Compression Tests)

  • 김태형;김용민;정상섬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.455-465
    • /
    • 2008
  • In this study, the load distribution and deformation of rock-socketed drilled shafts subjected to axial load are investigated based on small scale model tests. In order to analyze the effects of major influencing factors of end bearing capacity, Hoek-cell triaxial tests were performed. From the test results, it was found that the initial slope of end bearing load transfer (q-w) curve was highly dependent on rock mass modulus and pile diameter, while the ultimate unit toe resistance ($q_{max}$) was influenced by rock mass modulus and the spacing of discontinuities. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the Hoek-cell triaxial test results and the field loading tests which were performed on granite and gneiss in South Korea. Through the comparison with pile load tests, it is found that the load-transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer of drilled shaft.

  • PDF

Flow-forming 공법을 이용한 annulus gear 제조 기술 연구 (Study on the manufacturing technology of the annulus gear by using flow-forming method)

  • 이성민;김봉준;변원용;김태덕;박은수;권용남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.261-262
    • /
    • 2011
  • Conventional automatic transmission system includes a hydrodynamic torque converter to transfer engine torque from an engine crank shaft to a rotatable input members, which are of complex design permitting them to serve several functions. These are clutches or brakes which couple the rotatable input member to member of a planetary gear set. The annulus gear for an automatic transmission is a monolithic gear having a set of gear teeth formed on an inner surface which is coupling with a set of planetary gear. In this study, the flow forming method is applied to the manufacturing of the annulus gear. This cold forming is proper method in order to manufacture dimensionally precise and round hollow components such as annulus gear. By pre-calculated amount of wall thickness reduction, the seamless tube of SAE1026 is compressed above its yield strength, plastically deformed and made to flow in several roll passes. According to this study, the desired geometry of the annulus gear can be achieved when the outer diameter and the thickness of the tube are properly decreased by compressed roll passes and the available material volume is easily forced to flow longitudinally over the shape of mandrel.

  • PDF

열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석 (Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model)

  • 김현우;박도현;박의섭;선우춘
    • 터널과지하공간
    • /
    • 제24권4호
    • /
    • pp.297-307
    • /
    • 2014
  • 암반공동을 이용한 열에너지 저장은 대용량 저장이 가능하며 열저장매체를 선택할 수 있는 장점이 있다. 본 연구에서는 사일로 형태의 열저장공동이 지반 내 두 개 이상 배치될 때 공동 사이에 형성되는 암반 필라의 안정성에 대해 3차원 유한차분해석 프로그램인 $FLAC^{3D}$를 이용하여 분석하였으며, 저장된 열에너지로 인해 암반에 발생하는 열응력을 반영할 수 있도록 열-역학적 연계모델을 사용하였다. 해석 결과, 열에너지 장기 저장으로 인해 암반 필라에 작용하는 최대주응력이 상당량 증가하였으며, 필라 폭이 좁아질수록 근접한 열원 때문에 열응력 증가량도 커짐을 확인하였다. 필라 안정성에 영향을 미치는 주요인자로서 저장공동 간격, 측압계수, 심도를 선정하고 민감도 분석을 실시한 결과, 측압계수, 저장공동 간격, 심도 순서로 영향력이 크게 평가되었다. 저장공동 간격의 경우 동일한 크기의 공동 건설 시 필라 폭을 최소 저장공동 직경 이상 확보해야 할 것으로 판단되었다. 큰 규모의 저장공동 주변에 소규모 수직갱이 설치될 때는 최소한 저장공동 직경의 0.5배 이상 이격함으로써 크기 차이로 인해 수직갱에 응력이 집중되는 현상을 해소할 수 있었다. 또한 최대수평주응력 작용방향과 공동 중심을 잇는 축이 평행하도록 배치하여 저장공동에 의한 방패효과가 발휘될 수 있게 함으로써 현지응력이 공동 사이 암반 필라에 미치는 영향을 최소화할 수 있었다.