• Title/Summary/Keyword: sewer capacity

Search Result 109, Processing Time 0.034 seconds

Reliability Analysis of Storm Sewer System by AFOSM Method (AFOSM 방법에 의한 하수관망의 신뢰성 분석)

  • Kim, Mun Mo;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.201-209
    • /
    • 1993
  • The purpose of this study is to analyze the reliability of storm sewer system and AFOSM method is applied on Sinjeong detention basin area to decide the applicability of AFOSM method. The Rackwitz Algorithm, which is suitable for minimizing the error due to non-linearity, is used to find the failiure point. The performance functions are established to calculate the risk, rational formula is used to determine the load and Manning equation and Darcy-Weisbach equation are used to determine the sewer capacity, and the results are 0.119, 0.127, respectively. The Risk-Safety Factor relation for each return period is derived and the designing of storm sewer system based on reliability analysis is enabled.

  • PDF

Appropriate Sewerage Systems for Korea (우리나라 적합 하수도시설 및 관리방안)

  • 이상은
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.37-52
    • /
    • 1992
  • Since the first sewage treatment plant was constructed in 1976, the sewerage systems of Korea have been rapidly expanded. As of the end of 1991, 22 sewage treatment plants with total capacity of 5.4 million tons/day are in operation which is equivalent of 3395 total daily sewage generation. Total extension of sewer 39.534 km in 1990 which is 55% of the target extension for the year 2001. However, the most sewage treatment plants employ activated sludge process which may not be suitable for medium and/or small scale plants. The poor existing sewer systems do not effectively collect and transport sewage to adversely affect the function of sewage treatment plant. To select the appropriate treatment system, the cities are classified into 3 categories such as large and medium size inland cities, small size cities and coastal cities. Considering the criteria suggested during this study, appropriate treatment processes were selected for each category. Conventional activated sludge process and step aeration process were found to be the most appropriate for big inland cities while biological nutrient removal processes should be considered for the cities discharge the effluent to lakes or reservoirs. RBC or Oxidation Ditch process might be appropriate for the medium size cities while several processes which do not require skilled operation and maintenance were suggested for the small cities. Ocean discharge after primary treatment can be considered for some east coast cities, Appropriate methodology to rehabilitate the existing sewers and strategy to convert combined sewer system to separate sewer system were proposed. This paper also include the appropriate management system for industrial wastewater, sludge and nightsoil.

  • PDF

Methods for an application of real-time network control on distributed storage facilities (분산형 저류시설의 실시간 네트워크 제어기술 적용시 고려 사항)

  • Beak, Hyunwook;Ryu, Jaena;Oh, Jeill;Kim, Tae-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.711-721
    • /
    • 2013
  • Optimal operation of a combined sewer network with distributed storage facilities aims to use the whole retention capacity of all reservoirs efficiently before overflows take place somewhere in the considered network system. An efficient real-time network control (RTNC) strategy has been emerging as an attractive approach for reducing substantially the overflows from a sewer network compared to the conventional fixed or manually adjusted gate setting method, but the related concrete framework for RTC development has not been throughly introduced so far. The main goal of this study is to give a detailed description of the RTNC systems via reviewing several guidelines published abroad, and finally to suggest methods for the proper application of RTNC on distributed storage facilities. Especially, this study is focused on emphasizing the importance of hierarchical structure of RTNC system that consists of three control layers (management, global control and local control). Further, with regard to the global control layer which is responsible for the central overall network control, the wide-ranging details of two components (adaption and optimization layers) are also presented. This study can provide the valuable basis for the RTNC implementation in the particular sewer network with distributed multiple storage facilities.

Estimation of Water Quality Variation in Sewer Network using MOUSE TRAP Model (MOUSE TRAP 모델을 이용한 하수관거내 수질변화 예측)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.743-752
    • /
    • 2009
  • One of the major problems associated with operation of domestic sewer lines involves hydraulic problems such as insufficient conveyance capacity, exceeding maximum velocity, and deficiency of minimum velocity. It has also been pointed out that influent concentration lower than design concentration of pollutants, which is mainly caused by unidentified inflow and infiltration, degrades the operational efficiency of many sewage treatment plants (STPs). A computer-added analysis method supporting a coupled simulation of sewage quality and quantity is essentially required to evaluate the status of existing STPs and to improve their efficiency by a proper sewer rehabilitation work. In this study, dynamic water quality simulations were conducted using MOUSE TRAP to investigate the principal parameters that governs the changes of BOD, ${NH_4}^+$, and ${PO_4}^{3-}$3- concentrations within the sewer networks based on data acquired through on-site and laboratory measurements. The BOD, ${NH_4}^+$ and ${PO_4}^{3-}$3- concentrations estimated by MOUSE TRAP was lower than theoretical pollution loads because of sedimentation and decomposition in the sewer. The results revealed that sedimentation is a most important factor than other biological reactions in decreasing pollutant load in the sewers of C-city. The sensitivity analysis of parameters pertaining to water quality changes indicated that the effect of the BOD decay rate, the initial DO concentration, the half-saturation coefficient of dissolved BOD, and the initial sediment depth is marginal. However, the influence of settling rate and temperature is relatively high because sedimentation and precipitation, rather than biological degradation, are dominant processes that affect water quality in the study sewer systems.

Development of Optimal Urban Runoff System : II. Development of Decision Making Model for Optimal Control of Rainfal1-Runoff System in Urban Area (최적 도시유출시스템의 개발 : II. 도시유역의 최적유출시스템 제어를 위한 의사결정모형의 개발)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Kim, Hung-Soo;Jo, Deok-Jun;Kim, Eung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.207-217
    • /
    • 2004
  • Our government is interested in the rehabilitation for the old sewer rather than the construction of a new sewer system. However, the research work on the sewer rehabilitation is not sufficient as much as the interest on the rehabilitation is increased. There are some research works for the determination of rehabilitation time by the genetic algorithm in Korea and foreign countries. However, the previous studies have considered the simple elements for the determination of the rehabilitation time and so the complex decision-making according to the degree of sewer superannuation has not been performed. Therefore, in this study, we estimate the capacity and Ⅰ/Ⅰ of sewer and determine the priority of the optimal rehabilitation for each outfall within the draining system. Also we develop the optimal rehabilitation decision making system for the cost estimation of optimal rehabilitation using the genetic algorithm.

Estimation of Solid Sediments Load by Sewer and Land Surface for Maintenance of Combined Sewer Systems (합류식 관거 유지관리를 위한 하수 및 지표면 고형물 부하량 산정)

  • Lee Jae-Soo;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.533-544
    • /
    • 2006
  • The deposition of solids in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. In order to solve these problems and proper pipe management, estimation of solid loads from sewer and surface in a drainage basin is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer solid loads during dry weather in combined sewer systems and for estimating solid loads on surface in a drainage basin developed by the U. S. Environmental Protection Agency were applied and analyzed in Gunja drainage basin in Korea. As result, the estimated solid loads from sewer and surface are 205.8,759kg/yr and 1,321,993kg/yr respectively, and total solid loads is 1,527,752kg/yr. The estimated solid removal from street cleaning, dredging from pipe system and pumping house is 1,486,636kg/yr. Therefore, the applied methods show resonable results. More reliable estimation can be achieved if long-term measurements and adjustment of estimation equations are carried out, and this estimation methods can be used usefully for the management of combined sewer system with reduction of cost and effort.

Analysis of Estimation Technique for Solid Sediments in Combined Sewer Systems (합류식 관거 내 고형물 퇴적량 산정기법 분석)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.405-415
    • /
    • 2006
  • The deposition of sewer solids during dry weather in combined sewer systems results in a loss of flow capacity that may restrict flow and cause a local flooding and enhanced solids deposition. Sewer solid accumulations in drainage systems also create the 'first-flush' phenomena during wet weather runoff periods. In order to solve these problems, measurement of these loadings for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. In this study, generalized procedures for estimating sewer sediment solid during dry weather in combined sewer systems developed by the U. S. Environmental Protection Agency were applied in a drainage system in Korea. As result, the appropriate equation can be selected and applied according to the available data. However, the estimated solid sediment shows considerable difference between methods which classified by model and estimation methods of variable. The estimated values using equations (1) $\sim$ (4) are greater than that of equations (5) $\sim$ (9) and intermediate models show greater values than elaborate or simplest models. The comparison between simulated and measured solid deposition is difficult due to the absent of measurement data, but this estimation method can be used usefully for the management of sewer solid with reduction of cost and effort if the measurement is carried out and the equation is adjusted according to the actual drainage systems in Korea.

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (II) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (II): 위험도를 고려한 최적화 모형)

  • Park, Sang-Woo;Jang, Suk-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1029-1037
    • /
    • 2005
  • Urban Storm Sewer Optimal Design Model(USSOD) was developed to compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming (DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify. After testing the model, it is also applied to Ulsan drainage basin which was developed by Korea Land Cooperation(KOLAND). Comparing the design results of USSOD with those of KOLAND, discharge capacity 0.35 $m^3/sec$, the crown elevation is 0.77m higher and return cost is $9\%$ less than design results of KOLAND, which verify the improvement of USSOD. Layout design model using GIS and optimization including detention or retention effect are needed in the future study.

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

Maintenance Management System for Urban Drainage System (도시유역 내배수시설 유지관리시스템)

  • Lee, Jung-Ho;Joo, Jin-Gul;Kim, Eung-Seok;Park, Moo-Jong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.119-128
    • /
    • 2008
  • Sewer rehabilitation is performed to improve the problem for urban drainage sewer system recently. However the data for the sewer system is not stored enough so that the sewer system is difficult to be managed systematically. In this study, a maintenance management system for urban drainage system is developed to store the data efficiently and manage the system systematically. In the developed system, a hydraulic and hydrologic analysis module is included to test the carrying capacity of a sewer pipe and estimate the amount of combined sewer overflows. The I/I and superannuation evaluation module is included in this system. The module distribute the total inflow/infiltration observed at the several sampling points in a drainage area to the individual pipes of the entire sewer system. Then the superannuation of a sewer pipe is evaluated according to the amount of I/I of the pipe. And in the developed system, the optimal rehabilitation priority module is included to determine the optimal priority and support the decision making for the sewer rehabilitation. The maintenance management system which is developed in this study is constructed by the association with the developed modules and the system is formed as graphical user interface system.