• Title/Summary/Keyword: sewage system

Search Result 641, Processing Time 0.022 seconds

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

Evaluation of Sewage Treatment Plant Efficiency in the Variation of Sewage Inflow and Sludge Interface Height by Rainfall (강우로 인한 유입하수량 증가와 슬러지 계면높이 변화에 따른 하수처리장 효율평가)

  • Park, Hye-Sook;Song, Seok Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.549-553
    • /
    • 2014
  • Variation of sewage sludge interface height and flow rate by rainfall were applied to the actual public sewage treatment plant, and the efficiency of sewage treatment was evaluated by measuring $BOD_5$, $COD_{Mn}$, SS, T-N, and T-P. When both flow and interfacial height are increased, the treatment efficiencies in terms of the five water pollutants are decreased. Among them SS is the most critical pollutant in rainfall. When 0.5 Q inflow was applied, the efficiencies were 74.2% at the sludge interface height of 0.5 m, 76.4% at 1.0 m, 70.2% at 1.5 m, and 60.7% at 2.0 m. When 1.0 Q inflow was applied, the efficiencies were 71.7% at the sludge interface height of 0.5 m, 71.9% at 1.0 m, 46.4% at 1.5 m, and -38.0% at 2.0 m. Operation at 2.0 Q~2.0 m and 3.0 Q~1.0 m above the sludge rising phenomenon occurred causing adverse effects on the public bodies. If the flow rate increases, the processing efficiency is reduced from 74.2% to 17.3%, even though the sludge interface height was maintained at 0.5 m, so that the inflow adjustment was most important during rainfall, and the interface height of 1.0 m should be maintained to minimize the adverse effect on public water system.

Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor (Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.

Economic Evaluation of Integrated Operation & Management through Operation Performance Analysis of Sewage Facilities (하수도시설 통합운영 성과분석을 통한 통합운영관리의 경제성 평가)

  • Shin, Jungsub;Chung, Seokhyun;Cho, Byoungog;Lee, Kwanhyung;Kang, Seonhong;Kim, Yongdae;Yoon, Joonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • For economic evaluation of integrated operation to sewage facilities, benefit-cost analysis was performed to watershed sewage works project in 7 watershed areas, 156 facilities. In this study, the cost before and after integrated operation was compared and benefits are calculated from the reduction of operators, increasement treated pollution loads, reduction cost through operation convenience, reduction water consumption through effluent reuse, and improvement of life benefit. The result showed that cost was 8,500million won and benefit was 16,747million won, so benefit was 49% higher than cost. B/C analysis result showed that B/C ratio was 1.97 and it is similar to other researches. The benefits of integrated operation included convenience of data management, increase of emergency response, decrease of complains with sewage which was not reflected numerically, so the benefits of integrated operation were expected much greater than this result

A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent (하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구)

  • Paik, Ke-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.36-43
    • /
    • 2005
  • Prior to the study of the sewage treatment methods, water quality for Gwangju sewage of fluent was investigated from January to December, 2004 for sewage water reuse. Monthly mean values of BOD, SS, turbidity, total phosphorus and color were 4.1 mg/L, 2.9 mg/L, 0.8 NTU, 1.3 mg/L, and 27 unit, respectively. Jar-test was performed to investigate the removal efficiency of pollutants under the coagulation conditions of fast mixing for 5 min, slow mixing for 15 min and precipitation for 1hr. Here, alum and polyaluminium chloride (PAC) were used as coagulants to reduce color, turbidity, total phosphorus (TP) and total organic carbon (TOC) in sewage effluents. The results showed that PAC gave better efficiency in removing turbidity and dissolved phosphorus than alum. It was also found from the relative molecular weight (RMW) distribution analysis that organic matter over 1,000 Dalton (Da) was easily removed by coagulation and subsequently MF treatment, while it was not effective for less than 500 Da. Based on tis result, Natural organic matter (NOM) with lower molecular weight (< 500 Da) may cause harmful disinfectant by-product (DBP) after chlorine treatment. Thus, activated carbon adsorption seems to be required for the complete removal of DBP in the hybrid system.

Experimental Study on Hydrogen Sulfide Abatement in Sewage Odor Using Microbial Deodorants on the Market (시판용 미생물탈취제를 이용한 하수 악취 내 황화수소 저감에 관한 실험적 연구)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.2
    • /
    • pp.170-183
    • /
    • 2020
  • Objectives: This study was conducted to estimate a technology to reduce hydrogen sulfide (H2S) in sewage odor using microbial deodorant. Methods: After injecting five commercially available microbial deodorants into fresh sewage, the concentration of hydrogen sulfide over time was measured using the headspace method. H2S concentration in odor samples was measured using gas chromatograph/FPD. Calculated odor concentration and calculated odor intensity by H2S concentration remaining after treatment with microbial deodorant were evaluated theoretically. Results: The rate of H2S abatement by microbial deodorant differed depending on the experimental conditions and the type of deodorant, but it was found to range from 63 to 82%. Especially, two deodorants showed high H2S reduction rates of over 80% on average. However, based on the best deodorant, the theoretically calculated odor concentration by H2S after microbial deodorant treatment was 4,400 OUk, and the theoretical odor intensity was also rated at 4 degrees or higher. Conclusions: In conclusion, microbial deodorant is considered to have a relatively high effect on reducing H2S in sewage odor. However, even after treatment with microbial deodorant, calculated odor concentration and calculated odor intensity were relatively high. This is thought to be caused by other odorous substances besides H2S.

A Study on the 2-stage dry and pyrolysis system for reduction of sewage sludge (하수슬러지 감량화를 위한 one구동 2단형 열풍건조/열분해에 관한 연구)

  • Ha, Sang-An;Kim, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.52-60
    • /
    • 2004
  • The basic approach to sewage sludge is organic waste minimization, promotion of energy recovery; volume and weight reduction by final treatment, and environmentally final disposal of natural circulation. Dry and pyrolysis of maize was experimentally investigated in full-scale rotary kiln in semi-continuous operation. The operational parameters varied are the operating temperature $160{\sim}175^{\circ}C$ of dry and $450{\sim}800^{\circ}C$ of pyrolysis, the solids residence time 9 min for pyrolysis. Important parameters studied include the running time, water content of sewage sludge, solids amount of sewage sludge(TS%) by the varied temperature. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas production components was observed. The gas of $C_1{\sim}C_3$ yield increased and oil of $C_4{\sim}C_6$ yield decreased along with pyrolysis temperature of $670^{\circ}C$ by the run time of 9 min.

  • PDF

Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River (낙동강 유역 내 하수처리구역의 비점 배출 부하량 분석)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.695-709
    • /
    • 2015
  • The inflow of nonpoint pollution sources due to sustainable development and urbanization is gradually increasing and causes a diversity of water pollution. There are lots of difficulties to find a solution as the problems related to variation of hydrological and natural phenomenon. A differentiated method to estimate the nonpoint pollution sources has been proposed using rainfall and characteristics of urbanization and observed data from sewage treatment districts in the study. The types of nonpoint pollution sources on an assumption of combined sewer system have been classified as three types which are inflow of rainfall, bypass of sewage treatments, and combined sewer overflows from a river. Three types for estimation of nonpoint pollution sources applied more accurately to generate a amount of nonpoint pollution loads. This study is expecting a wide application for effective water resource management on TMDL (total maximum delivery load) unit watershed and sewage treatment districts.

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

Pretreatment and Rapid Detection Methods for Wastewater-Based Epidemiology (하수역학 구축을 위한 시료 전처리 기술과 신속검출기술)

  • Lee Jai-Yeop;Lee Bokjin;Jesmin Akter;Ahn Chang Hyuk;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.102-110
    • /
    • 2023
  • Wastewater Based Epidemiology (WBE) provides useful information not only on the use of illegal drugs in the community, but also on the presence of hygiene and health products and infectious pathogens in sewage facilities. As a consequence of the SARS-CoV-19 virus epidemic in 2019, monitoring the status of the infection is of utmost importance. SARS-CoV-19 was also detected in sewage, and the number and trend of infections in the community suggest that the application of the WBE system would be useful and appropriate. This study introduces a pre-treatment concentration method including viruses in sewage samples. A total of seven methods which were subdivided into methods for adsorption-extraction, ultra-filtration, PEG precipitation, and ultra-centrifugation, and the results for analyzing the recovery rates were included. Meanwhile, it is necessary to pay attention to rapid detection technologies which analyze infectious pathogens at the site of sewage facilities. These can include ELISA, FTIR, SERS, and biosensor based on the detection principle, and the characteristics, advantages, and disadvantages of each were summarized herein. If rapid detection technologies and accurate quantitative analyses are further developed, the use of sewage mechanics in response to pandemic viruses is expected to expand further.