• Title/Summary/Keyword: sewage sludge

Search Result 755, Processing Time 0.029 seconds

An Analysis on the Properties of Cement Mortar using Sewage Sludge Incineration Ash (하수슬러지 소각재를 이용한 시멘트 모르타르의 특성분석)

  • Ryu, Heon-Ki;Park, Jeong-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This is an experimental research in order to judge the applicability of sewage sludge incineration ash having applied the mixing proportion needed to manufacture bricks and to do plaster work with addition of hwangtoh and slaked lime as a part of the methods for utilizing the wastes produced from sewage sludge incineration ash. Based on the results from experiment and analysis, it is judged that, in case of mixing proportion of 1:2 for the purpose of plastering and masonry work, the cement mortar produced by using a 10% addition ratio of sewage sludge incineration ash with mixture of hwangtoh covering all range of addition ratio, and also the cement mortar produced by using a 20% of sewage sludge incineration ash together with 0% and 10% addition ratio of hwangtoh, was possible to be applied to the practical use. In case of mixing proportion of 1:7 for manufacture of bricks and blocks, if such brick and block products are produced with 10% and 20% addition ratio of sewage sludge incineration ash having added aggregate fines or stone dust that has been actually used in brick and block manufacturing, it is judged that these bricks and blocks could be practically used in the job sites, although strength development is a little bit lower.

  • PDF

A Review on Fuel Properties and Liquid Biofuels Production Technologies from Sewage Sludge (하수슬러지 유래 액상 바이오연료화 기술 및 연료 특성)

  • Park, JoYong;Kim, Jea-Kon;Im, Hyeun-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.540-559
    • /
    • 2018
  • The utilization of sewage sludge for liquid biofuel production is considered as a approach for achieving better energy security, sustainable productivity and economical raw material. Thermochemical technologies of sewage sludge into energy and fuel has been considered as one of the most effective process. Generally, sewage sludge contains more than 80% of moisture, has high metal contents and 14 ~ 20 MJ/kg of calorific value. This paper reviews the technologies of converting sewage sludge to liquid biofuel via three main thermochemical conversion processes namely pyrolysis, transesterification and supercritical. The fuel properties of liquid fuels produced by different technologies from sewage sludge and definition in relevant laws for liquid biofuels in Korea are also discussed.

The effect of sewage sludge compost amended soils on the growth of Orchardgrass seedlings (하수오니 첨가토양이 Orchardgrass 유식물체의 생육에 미치는 영향)

  • Lee, Ju Sam
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 1994
  • This experiment was carried out to investigate the effect of sewage sludge compost amended soils on the growth and accumulation patterns of heavy metals in plant parts of Orchardgrass seedlings, changes in physical properties and chemical composition, and heavy metal residue in soils. Mixture ratios of sewage sludge compost and soil(loam) were 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100(control), respectively. The results obtained were as follows; 1. The physical properties and chemical compostion of soils were improved by increase in mixture ratios of sewage sludge compost. 2. The biological yield of Orchardgrass seedlings was increased with mixture ratios of sewage sludge compost. 3. The dry weight of shoot(SH) was increased with both of yield components(NT and WT) and biological yield of Orchardgrass seedlings. 4. The total nitrogen concentrations(TN) of plants was increased with quadratically up to the biological yield of 100% mixture ratio of sewage sludge compost. 5. Lead(Pb) concentration of soil in over the 60% mixture ratios of sewage sludge compost were in excess of limiting level(50ppm) of organic fertilizers.

  • PDF

A Study on Pre-treatment Facility for Foodwaste and Sewage Sludge Mixture (음식폐기물과 하수슬러지 병합처리를 위한 전처리시설에 관한 연구)

  • Kim, Jong-Oh;Lee, Chang-Ho;Kim, Ji-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • The purpose of this study was to evaluate and improve the pre-treatment facility for foodwaste and sewage sludge mixture treatment. The process of foodwaste pre-treatment consists of storage, classification with crushing, and thickening. The effluent of sewage treatment facility was used as the diluting and washing water. The panicle size of foodwaste after pre-treatment was almost under 2mm, the mixture of foodwastes and sewage sludge showed an advantage to the anaerobic digestion. The amount of gas production increased from 0.8ton/day ($CH_4$ : 0.5ton/day) to 3.5ton/day ($CH_4$ : 2.3ton/day) after the anaerobic digestion of the foodwastes and sewage sludge mixture. The amount of sludge cake increased from 11.2ton/day to 21.2ton/day. Therefore, the proper operation of the foodwaste pre-treatment facility was contributed to the efficient anaerobic digestion of foodwaste and sewage sludge mixture treatment.

  • PDF

Microbial Communities and Diversities in a Full-Scale Mesophilic Anaerobic Digester Treating Sewage Sludge (하수슬러지 처리 실규모 중온 혐기성 소화조 미생물 군집 및 다양성 조사)

  • Minjae Kim;Suin Park;Juyun Lee;Hyebin Lee;Seonmin Kang;Hyokwan Bae;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1051-1059
    • /
    • 2022
  • This study investigated microbial communities and their diversity in a full-scale mesophilic anaerobic digester treating sewage sludge. Influent sewage sludge and anaerobic digester samples collected from a wastewater treatment plant in Busan were analyzed using high-throughput sequencing. It was found that the microbial community structure and diversity in the anaerobic digester could be affected by inoculation effect with influent sewage sludge. Nevertheless, distinct microbial communities were identified as the dominant microbial communities in the anaerobic digester. Twelve genera were identified as abundant bacterial communities, which included several groups of syntrophic bacteria communities, such as Candidatus Cloacimonas, Cloacimonadaceae W5, Smithella, which are (potential) syntrophic-propionate-oxidizing bacteria and Mesotoga and Thermovigra, which are (potential) syntrophic-acetate-oxidizing bacteria. Lentimicrobium, the most abundant genus in the anaerobic digester, may contribute to the decomposition of carbohydrates and the production of volatile fatty acids during the anaerobic digestion of sewage sludge. Of the methanogens identified, Methanollinea, Candidatus Methanofastidiosum, Methanospirillum, and Methanoculleus were the dominant hydrogenotrophic methanogens, and Methanosaeta was the dominant aceticlastic methanogens. The findings may be used as a reference for developing microbial indicators to evaluate the process stability and process efficiency of the anaerobic digestion of sewage sludge.

Thermophilic Co-Digestion of Municipal Sewage Sludge and Food Waste (음식물쓰레기의 하수슬러지를 이용한 고온통합 소화)

  • Han, So-Young;Kang, Ho;Choi, Yeon-Seok;Kim, Chi-Yeol
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.731-743
    • /
    • 2018
  • This study was performed to test the feasibility of thermophilic ($55^{\circ}$) co-digestion of municipal sewage sludge and food wastes. The management variables of co-digestion were the mixed ratios of municipal sewage sludge and food waste hydraulic retention times (HRTs). During the operation of thermophilic co-digestion, the reactor pH ranged from 7.0 to 7.5 and the reactor alkalinity remained above 3,200 to 4,000 mg/L as $CaCO_3$. The volatile fatty acids concentration increased as the HRT shortened from 20 days to 10 days and the mixture ratio increased to 1:4, but did not reach toxic levels for co-digestion of sewage sludge and food wastes. Methane productivity increased gradually as the organic loading rate increased. Maximum methane productivity reached 1.03v/v-d at an HRT of 10 days and at the mixture ratio of 1:4. The TVS removal efficiency decreased from 70.6% to 58.3% as the HRT shortened from 20 days to 10 days. TVS removal efficiency ranged from 57.0% to 77% during the entire operation. It is likely that thermophilic co-digestion of sewage sludge and food wastes is a very effective method both to environmentally treat food waste and to economically produce gas for energy.

A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant (하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구)

  • Nahm, Eui-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

Estimation of polycyclic aromatic hydrocarbons emission from sewage sludge of sewerage treatment plants in Korea

  • Kim, Dong-Hwan;Hwang, Jong-Seob;Lee, Min-Hee;Ok, Gon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.85-88
    • /
    • 2003
  • Polycyclic aromatic hydrocarbons (PARs) are an important group of organic contaminants present in sewage sludge, due to their persistence, toxic, bioaccumulative and long range transfer. These characters make themselves as Persistent Organic Pollutants(POPs) in Long Range Transboundary Air Pollutions convention(LRT AP) of Europe. A method of the gas chromatographic-mass spectrometric (GC-MS) determination of PARs present in sewage sludge was developed and applied to analyzed samples from five sewerage treatment plants (SWTPs), having different treatment types. PARs were extracted from freeze-dried samples by toluene 16 hours in a soxhlet extraction system. The sludge extracts were cleaned-up by an activated silica gel column chromatography. The sum of the 16 US Environmental Protection Agency PARs sewage sludge samples varied from 2.44 to 4.82 ${\mu}g$/g. Concentration of emission carcinogen PARs(PARcarc), such as Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a, h)anthracene and Indeno(1, 2, 3-cd)pyrene ranged from 0.62 to 1.03 ${\mu}g$/g. The total amount of PAHs emission from sewage sludge in Korea was calculated as a top-down approach. PARs and $\sum$PAHcarc from sewage treatment plants had several pathway each by-products. In the ocean dumping, PAHs and $\sum$PAHcarc emissions were 1155.95 kg/year and 5040.32 kg/year. In recycle, PAHs and $\sum$PAHcarc emissions were 98.36 kg/year and 428.87 kg/year. In the landfill, PAHs and $\sum$PAHcarc emissions were 190.40 kg/year and 830.21 kg/year. In the incineration, PAHs and $\sum$PAHcarc emission were 33.10 kg/year and 830.21 kg/year. (In case of incineration, the whole provisions of PARs and $\sum$PAHcarc contained to flowed in sludge was supposed to be exhausted to environment through exhaust after incineration.)

  • PDF

Study on CFD Analysis of Dying Plant with Rotary Kiln Type for Eco-Industrial Park (로타리 킬른형 건조로 열유동 해석에 관한 연구)

  • Kang, Woo-Jung;Hwang, Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.61-68
    • /
    • 2009
  • This paper presents the numerical analysis of process of sludge drying to know the characteristics of design parameters and develop the new process plant. Finite volume method and $k-{\varepsilon}$ turbulence model were used to analogy the sludge drying furnace. It has been attempted to perform the disposal of sewage sludge such as simple reclaiming and dumping in sea and incineration. Currently, these methods are restricted by national or international government regulations. The drying process is adopted as an effective method for sewage sludge treatment. However sewage sludge makes it difficult to treat with a large volume at the real drying process plant because of its own complicated physical, chemical, and thermal properties. The final design value of moisture content with 10% of the dried sludge can be obtained through the simulated outputs in this study.

  • PDF

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor (파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석)

  • Kim, Donghee;Huh, Kang Y.;Ahn, Hyungjun;Lee, Youngjae
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.331-342
    • /
    • 2017
  • To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.