• Title/Summary/Keyword: sewage concrete structures

Search Result 24, Processing Time 0.031 seconds

Development of Antimicrobial Concrete for Sewage Structures and Application to Construction Field (하수구조물용 항균콘크리트의 개발 및 현장적용)

  • Kim Moo-Han;Kim Gyu-Yong;Lee Eui-Bae;Lee Seung-Hoon;Sohn Yu-Shin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.91-97
    • /
    • 2006
  • Sewage facilities are positively necessary for environment improvement such as rainwater removal, sewage disposal, preservation of the qualify of water and health of the citizens in present-day. Meanwhile, a deterioration of the concrete sewer pipe is increasing rapidly due to the chemical and physical attack and especially biochemical attack that is to say biodeterioration. In this study, researches for the development of antibiotics and antimicrobial concrete were conducted to reduce biochemical corrosion of sewage concrete. First of all, desired performance, such as watertightness, antibiosis, homogeneity, workability and harmlessness, was proposed and performance of antibiotics and antimicrobial concrete were evaluated by them. And developed antimicrobial concrete was applied to actual construction field. As results of this study, dispersibility and antibiosis of liquid antibiotics superior to powdery antibiotics. Antibiosis of antimicrobial concrete was verified, and amount of elution of harmful and effective ingredients was little. In workability, setting time of antimicrobial concrete was delayed. Compressive strength and resistance to carbonation of antimicrobial concrete were more increased than ordinary concrete. Finally, as there were no problems in quality and construction progress of antimicrobial concrete produced in plant, applicability of antimicrobial concrete to actual construction field was verified.

An Exposure Experiment for the Evaluation of Corrosion Properties of Sewage Concrete Covered with Antibiotics (항균제를 도포한 하수시설 콘크리트의 생화학적 부식특성 평가를 위한 폭로시험)

  • Roh, Kyung-Min;Lee, Eui-Bae;Kim, Young-Duk;Lee, Byoung-Ky;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.73-76
    • /
    • 2006
  • Sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. To prevent biochemical corrosion of the sewage concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed. Recently, to evaluate biochemical corrosion properties of concrete, antimicrobial performance and resistance to sulfuric acid were investigated respectively. But, in this study, to evaluate it complexly, concrete specimen covered with antibiotics were exposed in the actual sewage environment and were investigated about corrosion properties after three months. As a result, weight change ratio, nature potential and sulfuric ratio of concrete covered with antibiotics were less than plain concrete.

  • PDF

Technology for Controlling Biochemical Corrosion by Sulfur-oxidizing Bacteria of Sewage Concrete Construction applied Antimicrobial Concrete (항균 콘크리트를 적용한 정화조 및 하수처리 콘크리트 구조물의 황산화세균에 의한 생화학적 부식 저감 기술)

  • Kim, Do-Su;Khil, Bae-Su;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.907-910
    • /
    • 2008
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biochemical reaction originated from sulfur-oxidizing bacteria. To prevent biochemical corrosion of the sewage concrete, antibiotics which inhibit growth of sulfur-oxidizing bacteria have to be developed and applied necessarily. In this study, we are going to introduce technology which biochemical corrosion of sewage facilities concrete could be controlled effectively by antibiosis of antimicrobial concrete

  • PDF

A Testing Method of Indoor Artificial Acceleration for the evaluation of Biochemical Corrosion Properties of Sewage Concrete (하수시설 콘크리트의 생화학적 부식특성 평가를 위한 실내 인공촉진 시험방법)

  • Lee, Eui-Bae;Kim, Do-Su;Khil, Bae-Su;Lee, Seung-Hoon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.69-72
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. To prevent biochemical corrosion of the sewage concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed. Existing methods to evaluate properties of biochemical corrosion of concrete examine the antimicrobial performance and resistance to sulfuric acid separately, but don't complexly. So, in this study, new method to test properties of biochemical corrosion of concrete complexly is suggested.

  • PDF

An Experimental Study on the Fundamental Properties of. Sewage Concrete Covered with Inorganic and Complex Antibiotics (무기계 항균제 및 유$\cdot$무기계 복합 항균제를 도포한 하수시설 콘크리트의 기초물성에 관한 실험적 연구)

  • Lee Eui-Bae;Lee Dong Heck;Na Chul Sung;Khil Bae Su;Kim Gyu Yong;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.499-502
    • /
    • 2005
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties such as bond strength, resistance to abraision, water absorption and air permeability of concrete covered with inorganic and complex antibiotics were investigated.

  • PDF

Service life of concrete culverts repaired with biological sulfate-resisting mortars

  • Hyun-Sub, Yoon;Keun-Hyeok, Yang;Nguyen, Van Tuan;Seung-Jun, Kwon
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2022
  • The purpose of this study is to examine the effectiveness of biological repairing mortars on restoring the structural performance of a sewage culvert deteriorated by sulfate attack. The biological mortars were developed for protecting concrete structures exposed to sulfate attack based on the block membrane action of the bacterial glycocalyx. The diffusion coefficient of sulfate ions in the biological mortars was determined from the natural diffusion cell tests. The effect of sulfate-attack-induced concrete deterioration on the structural performance of culverts was examined by using the moment-curvature relationship predicted based on the nonlinear section lamina approach considering the sulfuric-acid-induced degradation of the structure. Typical analytical assessments showed that biological mortars were quite effective in increasing the sulfate-resistant service life of sewage culverts.

A Study on the Performance Development of Sewage Concrete by Application of Antibiotics (항균제 도포에 의한 하수시설 콘크리트의 성능향상에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Khil, Bae-Su;Cho, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.371-378
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties of concrete covered with antibiotics were investigated. As a results of the study, it was proved that the antimicrobial performance of antibiotics was available. Also compressive strength and bond strength of concrete didn't closely connected with antibiotics, and resistance to abrasion, water absorption, air permeability, carbonation, salt damage and chemical attack of concrete was improved remarkably by covering with it.

Evaluation of Effectiveness of Concrete Coated with Bacterial Glycocalix under Simulated Sewage Environments (유사 하수환경에서 글라이코 캘릭스 코팅 콘크리트의 효율성 평가)

  • Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.97-104
    • /
    • 2020
  • The present study conducted mock-up tests under the simulated sewage environments to examine the practical significance and limitation of coating materials that were previously developed on the basis of the bacterial glycocalix as a protection of concrete structures exposed to microbiological and sulphate attacks. The variations of the compressive strength and mass of the concrete due to the sulphate attack were measured using cylinder specimens. The bacteria growth and glycocalix formulation were calculated from the samples extracted from the sewage pipes. The next generation sequencing analysis was also conducted for environmental damage assessment due to the use of Rhodobacter capsulatus in the simulated sewage environments. The mock-up tests revealed that the developed coating materials have a good potential in resisting the sulphate attack, indicating no reduction on compressive strength and mass of the coated concrete under the sewage environment. At the age of 91 days, the concentrations of viable bacteria and glycocalix measured from the hardened coating materials were 1.4×104cell/mL and 67.5mg/㎤, respectively. Moreover, harmful strains were not observed in the sewage water including glycocalix-coated concrete pipes. This implies that Rhodobacter capsulatus used in the coating materials does not influence negatively the microorganism cluster in the sewage environments.