• Title/Summary/Keyword: sewage concrete

Search Result 78, Processing Time 0.029 seconds

An Experimental Study on the Engineering Properties of Concrete Spread with Liquefied Antibiotics (액상 항균제를 도포한 하수시설용 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Lee Eui-Bae;Kim Yong-Duk;Cho Bong-Suk;Kim Jae-Hwan;Khil Bae-Su;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.233-236
    • /
    • 2005
  • Sewage facilities are positively necessary for environment improvement such as rainwater removal, sewage disposal, preservation of the quality of water and health of the citizens in present-day. Meanwhile, a deterioration of the concrete sewer facilities is increasing rapidly due to the chemical and physical attack and especially biochemical attack that is to say biodeterioration. In this study, to prevent biochemical corrosion of the sewer concrete, surface of the concrete was spread with liquefied organic and inorganic complex antibiotics and then its engineering properties were experimentally investigated

  • PDF

A Study on the Performance Development of Sewage Concrete by Application of Antibiotics (항균제 도포에 의한 하수시설 콘크리트의 성능향상에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Khil, Bae-Su;Cho, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.371-378
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties of concrete covered with antibiotics were investigated. As a results of the study, it was proved that the antimicrobial performance of antibiotics was available. Also compressive strength and bond strength of concrete didn't closely connected with antibiotics, and resistance to abrasion, water absorption, air permeability, carbonation, salt damage and chemical attack of concrete was improved remarkably by covering with it.

Antibacterial Performance of Inorganic Liquified Antibiotics for antibacterial Concrete used in Sewage Facilities (하수시설에 사용되는 항균 콘크리트용 무기계 액상 항균제의 항균성능)

  • Kim Do Su;Khil Bae Su;Kim Gyu Yong;Lee Seung Hoan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.49-52
    • /
    • 2005
  • This study was performed to evaluate antibacterial performance antibiotics(RCF-95, Antibio-C) which could control biochemical corrosion of concrete used sewage facilities by sulfate oxidizing bacteria. As antibacterial methods, Broth MIC testing was used for investigating controlled growth effect of sulfate oxidizing bacteria. Also, color-changed testing by indicator was used for confirming between $H_{2}SO_{4}$ diffusion rate by bacteria and antibiotics. It confirmed that Antibio-C was superior to RCF-95 in the antibacterial performance and hence anticipated that this developed Antibio-C was enough to replace imported antibiotics from Japan.

  • PDF

Service life of concrete culverts repaired with biological sulfate-resisting mortars

  • Hyun-Sub, Yoon;Keun-Hyeok, Yang;Nguyen, Van Tuan;Seung-Jun, Kwon
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2022
  • The purpose of this study is to examine the effectiveness of biological repairing mortars on restoring the structural performance of a sewage culvert deteriorated by sulfate attack. The biological mortars were developed for protecting concrete structures exposed to sulfate attack based on the block membrane action of the bacterial glycocalyx. The diffusion coefficient of sulfate ions in the biological mortars was determined from the natural diffusion cell tests. The effect of sulfate-attack-induced concrete deterioration on the structural performance of culverts was examined by using the moment-curvature relationship predicted based on the nonlinear section lamina approach considering the sulfuric-acid-induced degradation of the structure. Typical analytical assessments showed that biological mortars were quite effective in increasing the sulfate-resistant service life of sewage culverts.

Settlement of Fine Recycled-concrete Aggregates Foundation under Sewage Conduit System (폐콘크리트 재생잔골재의 하수관거 모래기초 적용에 따른 침하 거동)

  • Oh, Je-Ill;Ahn, Nam-Kyu;Lee, Ju-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.486-490
    • /
    • 2005
  • Fine recycled-concrete aggregates(RCAs) instead of natural sand were tested for a foundation material under sewage conduit system, which was evaluated based on foundation settlement at various conditions. To obtain this applicability of RCAs, the settlement behavior was simulated with FLAC program based on the difference of material properties, and immediate settlement behaviors and the change of material properties under the simulated drainage conditions also tested at the various loading conditions in the laboratory. Finally, large-scale settlement test in the field was conducted to prove the above feasibilities. Subsequently, the amount of settlement from the FLAC simulation was calculated under $5.0{\times}10^{-6}\;m$ and the extent of settlement and property changes (porosity, permeability and waster absorption) was not noticeable from the laboratory experiments. Also, settlement monitoring from the field experiment showed the consistent results with laboratory experiments except for the consolidation settlement(=5 mm) of the round below the foundation. In summary, adopting fine RCAs as a foundation material for sewage conduit system was resonable based of geotechnical point of view.

Properties of Eco-Construction Material Using Recycled Sewage Sludge Ash (하수슬러지 소각재를 재활용한 친환경 건설 소재의 재료적 특성)

  • Jo, Byung-Wan;Lee, Jea-Ik;Park, Seung-Kook;Lee, Jae-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.667-676
    • /
    • 2007
  • As the 21st century began, cement and concrete that are representatives of modem building materials became a major factor in global warming, air pollution and environmental pollution. Also, the problems that are generated while pursuing high performance and high strength became social issues. Therefore, it has become urgent to prepare counter plans. This study has aimed at the recycling of sewage sludge ash and developing it as a new concept in building material which serves the environmental considerations for long-lasting developmental purpose. Also, the study aimed to find a substitute for scarce natural resources and to secure high techniques for waste recycling. The purpose of this study was also to solve fundamentally secondary environmental pollution. The results revealed that the chemical components of sewage sludge ash are mainly $SiO_2\;and\;Al_2O_3$ which are similar to the components of pozzolan. Also, it was identified that sewage sludge ash can be utilized as a hardened specimen with an alkali activated pozzolan reaction. Considering the possibility of appropriate strength development and the advantage of drying shrinkage, compared with that of cement, it was believed that sewage sludge ash can demonstrate a function as a substitute for cement given.

An Experimental Study on the Physical Properties of Concrete Spread with Liquefied Organic and Inorganic Complex Antibiotics (액상 유·무기 복합 항균제를 도포한 콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kim, Mu-Han;Kim, Jae-Hwan;Jo, Bong-Suk;Lee, Eui-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • Recently sewage facilities mainly consisted of concrete structures are being deteriorated seriously by biodeterioration originated from sulfur-oxidizing bacteria. In this study, to prevent biochemical corrosion of the sewer concrete, antibiotics which prevent growth of sulfur-oxidizing bacteria were developed and antimicrobial performance of it was investigated. After that, to consider applicability of antibiotics to concrete, physical properties of concrete spread with antibiotics were investigated. As a results of the study, it was proved that the antimicrobial performance of antibiotics was available. Also compressive strength and bond strength of concrete didn't closely connected with antibiotics, and resistance to abrasion, water absorption and air permeability of concrete was improved remarkably by spraying with it.