• Title/Summary/Keyword: setup reproducibility

Search Result 32, Processing Time 0.028 seconds

Development of RMRD and Moving Phantom for Radiotherapy in Moving Tumors

  • Lee, S.;Seong, Jin-Sil;Chu, Sung-Sil;Yoon, Won-Sup;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.63-63
    • /
    • 2003
  • Purpose: Planning target volume (PTV) for tumors in abdomen or thorax includes enough margin for breathing-related movement of tumor volumes during treatment. We developed a simple and handy method, which can reduce PTV margins in patients with moving tumors, respiratory motion reduction device system (RMRDs). Materials and Methods: The patients clinical database was structured for moving tumor patients and patient setup error measurement and immobilization device effects were investigated. The system is composed of the respiratory motion reduction device utilized in prone position and abdominal presser (strip device) utilized in the supine position, moving phantom and the analysis program, which enables the analysis on patients setup reproducibility. It was tested for analyzing the diaphragm movement and CT volume differences from patients with RMRDs, the magnitude of PTV margin was determined and dose volume histogram (DVH) was computed using a treatment planning software. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the fraction of the normal liver receiving to 50% of the isocenter dose(TD50). Results: In case of utilizing RMRDs, which was personally developed in our hospital, the value was reduced to $5pm1.4 mm$, and in case of which the belt immobilization device was utilized, the value was reduced to 3$pm$0.9 mm. Also in case of which the strip device was utilized, the value was proven to reduce to $4pm.3 mm$0. As a result of analyzing the TD50 is irradiated in DVH according to the radiation treatment planning, the usage of the respiratory motion reduction device can create the reduce of 30% to the maximum. Also by obtaining the digital image, the function of comparison between the standard image, automated external contour subtraction, and etc were utilized to develop patients setup reproducibility analysis program that can evaluate the change in the patients setup. Conclusion: Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.

Quantitative Evaluation of Setup Error for Whole Body Stereotactic Radiosurgery by Image Registration Technique

  • Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.103-105
    • /
    • 2002
  • Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates.

  • PDF

A Study of Thermoplastic Masks Deformation for Reducing Scattered Ray in Radiation Therapy (방사선치료용 열가소성 플라스틱 마스크의 산란선 감소를 위한 마스크 변형에 관한 연구)

  • Seong-Min, Lee;Jun-Young, Lee;Jae-Hyun, Kim;Kyeong-Hwan, Jeong;Jeong-Min, Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • In head and neck radiation therapy, the thermoplastic immobilization mask used for fixing the patient's posture and reproducibility causes scattered rays by being in close contact with the skin. To investigate the increase in skin dose due to the scattered rays generated from the immobilization mask, we evaluated dose reduction by decreasing contact between face skin and immobilization mask in computerized radiotherapy planning system with CT scanned images. In addition, to confirm the reproducibility problem of the setup due to the decrease in the cover area of immobilizing, the difference of each setup was confirmed using DRR and CT images. As the mask area covered for immobilizing was reduced, the dose on the skin surface significantly decreased, and it was confirmed that there was no significant difference in reproducibility even if the entire face was not covered and fixed.

Reproducibiity of setup error for prostate cancer by ultrasound image-guided radiation therapy (전립선암에 대한 초음파 영상유도 방사선치료의 Setup 오차 분석을 통한 재현성 평가)

  • Park, Sung Yong;Lim, Seung Kyu;Si, Myoung Geun;Lee, Ji Hae;Kim, Jong Yeol;Cho, Eun Joo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • Purpose: To evaluate the reproducibility of image-guided radiotherapy using ultrasonography which is non-invasive, without radiation exposure for prostate cancer patients. Materials and Methods: We analyzed the setup variation of 1,105 images for 26 prostate cancer patients and the mean, standard deviation and 3D-error in AP, RL and SI directions. Setup variations were classified 0-1 mm, 1-3 mm, 3-5 mm, 5 mm and more. Results: The mean and standard deviation of setup variation in AP, RL and SI directions was $1.87{\pm}1.36mm$, $1.73{\pm}1.22mm$ and $2.01{\pm}1.40mm$. The 3D-error in AP, RL and SI directions was $3.63{\pm}1.63mm$. The frequency of setup variation in AP direction was 29 % in the range from 0 mm to 1 mm, 50.2 % in the range from 1 mm to 3 mm, 19.6 % in the range from 3 mm to 5 mm and 1.3 % in the range of 5 mm or more. In RL direction, the frequency was 31.3 % in the range from 0 mm to 1 mm, 52.5 % in the range from 1 mm to 3 mm, 15.8 % in the range from 3 mm to 5 mm and 0.5 % in the range of 5 mm or more. SI direction, the frequency of errors in the range from 0 mm to 1 mm was 26.3 %, 50.2 % in the range from 1 mm to 3 mm, 22.4 % in the range from 3 mm to 5 mm, and 1.1 % in the range of 5 mm or more. Conclusion: The setup error was highest in the SI direction of $2.01{\pm}1.40mm$. The frequency in each direction was the highest in more than 50 % in the range from 1 mm to 3 mm. $Clarity^{TM}$ Auto scan is possible to monitoring the motion of the prostate during the treatment and to repositioning the patient. In conclusion real-time image-guided radiotherapy using ultrasonography will be increase the reproducibility of radiation therapy.

  • PDF

Study on the Dose Characteristics of the PTW-LinaCheck Dosimeter and Its Application to Daily Output Measurement (PTW-LinaCheck 측정기의 선량 특성과 일일 출력측정 응용에 관한 연구)

  • Jeong, Dong-Hyeok;Lee, Kang-Kyoo;Moon, Un-Chul;Kim, Hyun-Jin;Kim, Young-Seok;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • In this study, we have investigated the dose characteristics of PTW-LinaCheck designed to detect output of medical LINAC and discussed clinical use of the detector. The reproducibility, linearity, and dose rate dependency of the dosimeter were measured for photons of 6 and 15MV and the electrons of 4, 6, 9, 12, and 16MeV. To know the error ranges of the measured data in daily output measurement, the response variations due to geometrical setup errors were measured. As a result of measurement, the error range from the geometrical setup and the reproducibility was less than ${\pm}0.6%$ for given beam qualities in daily output measurement, where the errors from the linearity and the dose rate dependency were negligible. Finally, we concluded that the LinaCheck dosimeter has a good characteristics in terms of dose and setup convenience in daily output measurement. In addition we have shown an examples of clinical use of this dosimeter for measuring daily output more than 60 days.

  • PDF

Development of Immobilization Devices for Patients with Pelvic Malignancies and a Feasibility Evaluation during Radiotherapy (골반부 암 환자를 위한 고정기구 개발 및 방사선치료 시 효용성 평가)

  • Park, Jong-Min;Park, Yang-Kyun;Cho, Woong;Park, Charn-Il;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.134-144
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: Immobilization devices that improve the setup reproducibility of pelvic cancer patients and that provide comfort to patients during radiotherapy were designed and the feasibility of the devices was evaluated. $\underline{Materials\;and\;Methods}$: A customized device was designed to immobilize a knee, thigh, and foot of a patient. Sixty-one patients with prostate cancer were selected and were divided into two groups-with or without devices. The setup errors were measured with respect to bony landmarks. The difference between digitally reconstructed radiographs (DRR) and simulation films, and the differences between DRR and portal films were measured. $\underline{Results}$: The left-right (LR), anterior-posterior (AP) and craniocaudal (CC) errors between the DRR and simulation films were $1.5{\pm}0.9\;mm$, $3.0{\pm}3.6\;mm$, and $1.6{\pm}0.9\;mm$, respectively without devices. The errors were reduced to $1.3{\pm}1.9\;mm$, $1.8{\pm}1.5\;mm$ and $1.1{\pm}1.1\;mm$, respectively with the devices. The errors between DRR and portal films were $1.6{\pm}1.2\;mm$, $4.0{\pm}4.1\;mm$, and $4.2{\pm}5.5\;mm$, respectively without the devices and were reduced to $1.0{\pm}1.8\;mm$, $1.2{\pm}0.9\;mm$, and $1.2{\pm}0.8\;mm$, respectively, with the devices. The standard deviations among the portal films were 1.1 mm, 2.1 mm, and 1.0 mm at each axis without the devices and 0.9 mm, 1.6 mm and 0.8 mm with the devices. The percentage of setup errors larger than 3 mm and 5 mm were significantly reduced by use of the immobilization devices. $\underline{Conclusion}$: The designed devices improved the setup reproducibility for all three directions and significantly reduced critical setup errors.

Evaluation of Set-up Accuracy for Frame-based and Frameless Lung Stereotactic Body Radiation Therapy (폐암 정위체부방사선치료 시 고정기구(frame) 사용 유무에 따른 셋업 정확성 평가)

  • Ji, Yunseo;Chang, Kyung Hwan;Cho, Byungchul;Kwak, Jungwon;Song, Si Yeol;Choi, Eun Kyung;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.286-293
    • /
    • 2015
  • The purpose of this study was to evaluate the set up accuracy using stereotactic body frame and frameless immobilizer for lung stereotactic body radiation therapy (SBRT). For total 40 lung cancer patients treated by SBRT, 20 patients using stereotactic body frame and other 20 patients using frameless immobilizer were separately enrolled in each group. The setup errors of each group depending on the immobilization methods were compared and analyzed. All patients received the dose of 48~60 Gy for 4 or 5 fractions. Before each treatment, a patient was first localized to the treatment isocenter using room lasers, and further aligned with a series of image guidance procedures; orthogonal kV radiographs, cone-beam CT, orthogonal fluoroscopy. The couch shifts during these procedures were recorded and analyzed for systematic and random errors of each group. Student t-test was performed to evaluate significant difference depending on the immobilization methods. The setup reproducibility was further analyzed using F-test with the random errors excluding the systematic setup errors. In addition, the ITV-PTV margin for each group was calculated. The setup errors for SBF were $0.05{\pm}0.25cm$ in vertical direction, $0.20{\pm}0.38cm$ in longitudinal direction, and $0.02{\pm}0.30cm$ in lateral direction, respectively. However the setup errors for frameless immobilizer showed a significant increase of $-0.24{\pm}0.25cm$ in vertical direction while similar results of $0.06{\pm}0.34cm$, $-0.02{\pm}0.25cm$ in longitudinal and lateral directions. ITV-PTV margins for SBF were 0.67 cm (vertical), 0.99 cm (longitudinal), and 0.83 cm (lateral), respectively. On the other hand, ITV-PTV margins for Frameless immobilizer were 0.75 cm (vertical), 0.96 cm (longitudinal), and 0.72 cm (lateral), indicating less than 1 mm difference for all directions. In conclusion, stereotactic body frame improves reproducibility of patient setup, resulted in 0.1~0.2 cm in both vertical and longitudinal directions. However the improvements are not substantial in clinic considering the effort and time consumption required for SBF setup.

Abdomen Immobilization with Air Injected Balloon Blanket

  • Suh, Ye-Lin;Yi, Byong-Yong;Ahn, Seung-Do;Lee, Sang-Wook;Kim, Jong-Hoon;Shin, Seung-Ai;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.100-102
    • /
    • 2002
  • The demand for a better immobilization device has been increased in the radiation oncology field. Especially, it is essential to have a reliable and practical immobilization tool for the whole body radiosurgery and the IMRT (intensity modulated radiation therapy). A useful method to immobilize the abdomen for the external beam radiation treatment is developed. The air-injected balloon blanket (AIBB) was designed as an immobilization device. As the air was injected into it, it pressed down the patient's abdomen and fixed the patient. The AIBB played a role not only to grab the patients' motion, but also to increase the patients' setup reproducibility. Patients' movements due to the respiration were reduced and the reconstruction could be maximized. The experimental results revealed that the AIBB could be used for the clinic.

  • PDF