• Title/Summary/Keyword: setup

Search Result 2,344, Processing Time 0.029 seconds

Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy

  • Lee, Soon Sung;Min, Chul Kee;Cho, Gyu Suk;Han, Soorim;Kim, Kum Bae;Jung, Haijo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.149-155
    • /
    • 2017
  • Radiotherapy patients should maintain their treatment position as patient setup is very important for accurate treatment. In this study, we evaluated patient setup error quantitatively according to Cone-Beam Computed Tomography (CBCT) Gamma Density Analysis using Mobius CBCT. The adjusted setup error to the $QUASAR^{TM}$ phantom was moved artificially in the superior and lateral direction, and then we acquired the CBCT image according to the phantom setup error. To analyze the treatment setup error quantitatively, we compared values suggested in the CBCT system with the Mobius CBCT. This allowed us to evaluate the setup error using CBCT Gamma Density Analysis by comparing the planning CT with the CBCT. In addition, we acquired the 3D-gamma density passing rate according to the gamma density criteria and phantom setup error. When the movement was adjusted to only the phantom body or 3 cm diameter target inserted in the phantom, the CBCT system had a difference of approximately 1 mm, while Mobius CBCT had a difference of under 0.5 mm compared to the real setup error. When the phantom body and target moved 20 mm in the Mobius CBCT, there are 17.9 mm and 13.5 mm differences in the lateral and superior directions, respectively. The CBCT gamma density passing rate was reduced according to the increase in setup error, and the gamma density criteria of 0.1 g/cc/3 mm has 10% lower passing rate than the other density criteria. Mobius CBCT had a 2 mm setup error compared with the actual setup error. However, the difference was greater than 10 mm when the phantom body moved 20 mm with the target. Therefore, we should pay close attention when the patient's anatomy changes.

Research of 6MeV electron dose distribution (Electron therapy에서의 dose distribution에 관한 연구)

  • Je Jae Yong;Park Chul Woo;Jin Sung Jin;Park Eun Tae
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.27-32
    • /
    • 2005
  • Electron is used for the treatment of skin cancer, breast cancer, and head and neck cancer in clinic. Our study is performed to check the isodose distribut ion in source surface distance(SSD) and source bolus distance(SBD) setup, nipple influence to isodose distribution of electron, junctional area isodose variation of photon and electron field. Dosimetry is carried out with phantom, acryl, and film as the same condition of treatment setup. $8\%$ of isodose difference is noted with the surface distance(SSD) and source bolus distance(SBD) setup. To reduce the influence of nipple. corresponding volume of bolus should be removed. And bolus covering all the electron field reduced hot and cold spot of junctional area of photon.

  • PDF

Dosimetric Comparison of Setup Errors in Intensity Modulated Radiation Therapy with Deep Inspiration Breath Holding in Breast Cancer Radiation Therapy (Deep Inspiration Breath Holding을 적용한 유방암 세기변조방사선치료 시 위치잡이오차 분석을 통한 선량 평가)

  • Ham, Il-Sik;Cho, Pyong-Kon;Jung, Kang-Kyo
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.137-143
    • /
    • 2019
  • The aim of this study was analyzed the setup error of breast cancer patients in intensity modulated radiation therapy(IMRT) with deep inspiration breath holding(DIBH) and was analyzed the dose distribution due to setup error. A total of 45 breast cancer cases were performed a retrospective clinical analysis of setup error. In addition, the re-treatment planning was carried by shifting the setup error from the isocenter at the treatment. Based on this, the dose distribution of PTV and OARs was compared and analyzed. The 3D error for small breast group and medium breast group and large breast group were 3.1 mm and 3.7 mm and 4.1 mm, respectively. The difference between the groups was statistically significant(P=0.003). DVH results showed HI, CI for the PTV difference between standard treatment plan and re-treatment plan of 14.4%, 4%. The difference in $D_5$ and $V_{20}$ of the ipsilateral lung was 5.6%, 13% respectively. The difference in $D_5$ and $V_5$ of the heart of right breast cancer patients was 6.8%, 8% respectively. The difference in $D_5$, $V_{20}$ of the heart of left breast cancer patients was 7.2%, 23.5% respectively. In this study, there was a significant association between breast size and significant setup error in breast cancer patients with DIBH. In addition, it was found that the dose distribution of the PTV and OARs varied according to the setup error.

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF

SYNCHRONIZING INDIVIDUALLY OPTIMAL CYCLE TIMES ACROSS MULITI-BUYERS AND MULTI-PRODUCTS

  • Lee, Chang-Hwan
    • Management Science and Financial Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-42
    • /
    • 1998
  • A joint problem of order delivery, setup reduction, and cost-sharing in a two-echelon inventory system in which a vendor supplies multiple products to a group of buyers is studied here. The basic premise is that buyers have independently implemented setup reduction programs to acquire benefits from small order sizes. Doing so, however, causes the buyers' individually optimal order cycles to be differ from that of the vendor. In conjunction with this, two models are considered. In the first model, a multi-buyers single product situation is considered in which the vendor implements a joint supply cycle policy. However, buyers, as the dominant party, insist after implementing the individually optimal setup reduction that the vendor accept their individually optimal order schedules. In the second model. a multi-products, single buyer situation is considered in which the buyer implements a joint order policy. Here, the vendor, as the dominant party, refuses to cooperate fully with the buyer's individually reduced joint order schedule, and designs his own individually optimal setup reduction mix for each product under a given budget constraint. This led to a study of an integrated Setup Reduction/Break-even Pricing Policy for each situation to eliminate mismatches in individually optimal cycle times.

  • PDF

New Path-Setup Method for Optical Network-on-Chip

  • Gu, Huaxi;Gao, Kai;Wang, Zhengyu;Yang, Yintang;Yu, Xiaoshan
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.367-373
    • /
    • 2014
  • With high bandwidth, low interference, and low power consumption, optical network-on-chip (ONoC) has emerged as a highly efficient interconnection for the future generation of multicore system on chips. In this paper, we propose a new path-setup method for ONoC to mitigate contentions, such as packets, by recycling the setup packet halfway to the destination. A new, strictly non-blocking $6{\times}6$ optical router is designed to support the new method. The simulation results show the new path-setup method increases the throughput by 52.03%, 41.94%, and 36.47% under uniform, hotspot-I, and hotspot-II traffic patterns, respectively. The end-to-end delay performance is also improved.

Determining Machinability and Setup Orientation for Five-axis NC Machining of Free Surfaces (머신 컨피규레이션에 따른 자유곡면의 5 축 가공성과 셋업 자세)

  • Kang, Jae-Kwan;Suh, Suk-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.67-84
    • /
    • 1995
  • Five-axis NC machining is advanced machining technology by which highly geometrically complicated parts can be machined accurately with high machinability. In this paper, we investigate the problems of determining the machinability and part setup orientation for a given surface models. We first develop kinematic model of the five-axis machines based on the axis configuration, then develop algorithms for determining the feasibility of machining by one setup(machinability) and the part orientation for the C,A and A,B type configuration. The machinability is determined by computationally efficient procedure for finding the intersection between the feasible area on the sphere and the numerical map called binary spherical map(BSM), and the part setup is chosen such that the rotational range is minimized among the feasible configurations. The developed algorithms are tested by numerical simulations, convincing they can be readily implemented on the CAD/CAM system as an automated process planner giving the efficient machine type and setup for NC machining.

  • PDF

Heuristic Approach for Lot Sizing and Scheduling Problem with State Dependent Setup Time

  • Han, Jung-Hee
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.74-83
    • /
    • 2011
  • In this paper, we consider a new lot-sizing and scheduling problem (LSSP) that minimizes the sum of production cost, setup cost and inventory cost. Setup carry-over, setup overlapping, state dependent setup time as well as demand splitting are considered. For this LSSP, we develop a mixed integer programming (MIP) model, of which the size does not increase even if we divide a time period into a number of micro time periods. Also, we develop an efficient heuristic algorithm by combining a decomposition scheme with a local search procedure. Test results show that the developed heuristic algorithm finds a good quality (in practice, even better) feasible solution using far less computation time compared with the CPLEX, a competitive MIP solver.

An Integrated Ordering and Setup Cost Reduction Model (통합 주문 및 가동준비단축 모형)

  • 이창환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.3
    • /
    • pp.49-64
    • /
    • 2000
  • A vendor supplies a product to a sole/major buyer on a lot-for-lot basis under deterministic inventory control conditions. The basic premise is that the setup cost reduction technologies are available to both the buyer and the vendor, and that the vendor's inventory and setup reduction investment costs differ from the buyer's. Therefore, an individually designed ordering and setup cost reduction policy will likely cause mismatches between the vendor's and the buyer's optimal cycle times. For this situation, we show that a joint optimal setup cost reduction and ordering policy, together with an appropriate side payment(quantity discount or premium price) schedule, can be designed in a spirit in a spirit of coordination to eliminate mismatches in individual optimal cycle times.

  • PDF