• Title/Summary/Keyword: settlement behavior

Search Result 648, Processing Time 0.022 seconds

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF

The Relationship between Loading Velocity and Ground Heaving Characteristics (재하속도와 지반융기 특성의 상호관계)

  • Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.77-83
    • /
    • 2006
  • The purpose of this study is to analyze lateral displacement behavior of clay layers in case of the banking in soft ground through model tests. Seven model tests varying with thickness of soft clay and loading velocity are performed to correlate between ground heaving and loading velocity. In case of low loading velocity, vertical settlement below loading plate and small ground heaving are obviously observed. In case of the high loading velocity, it is shown that both soil displacement at the end of a loading plate and surface heaving are large. In addition, the calculated displacements show good agreement with three cases of field measurements in clay with high moisture contents so that we can predict the range of heaving area and the amount of heaving.

  • PDF

Estimation of deformation modulus for rock mass using stress distribution under ground in Large Plate Load Test (대형평판재하시험의 지중응력 측정결과를 이용한 연암의 변형계수 산정)

  • Park, Won-Tae;Lee, Min-Hee;Choi, Yong-Kyu;Kim, Seok-Chan;Kim, Jung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.539-545
    • /
    • 2010
  • The field plate test has a good potential for determining since it measures both plate pressure and settlement. The deformation modulus of rock mass is differently measured for status of structures. The values of deformation modulus are obtained from laboratory test (uniaxial and triaxial test) and field test (pressuremeter test). Plate load test should be conducted by different loading plate sizes for geological structure of rock mass and scale of structures. In this paper, large plate load tests were performed to predict of structure's behavior and evaluate the ultimate bearing capacity of the foundation on soft rock. Simultaneously, deformation modulus of rock mass was estimated by back analysis of stresses measured in field test under rock mass. Finally, we verified the validation of deformation modulus of rock mass through result of large plate load test and numerical simulation.

  • PDF

Long-term Consolidation Characteristics of Busan Clay considering OC or NC States (과압밀 및 정규압밀영역의 응력상태에 따른 부산점토 장기압밀특성)

  • Kim, Yun-Tae;Jo, Sang-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.110-115
    • /
    • 2011
  • Numerouslong-term consolidation and secondary compression settlements may occur in Busan clay, which is astructured soft clay and consists of a thick clay deposit. As a surcharge load is applied to soils, soils experience different stress paths with depth. Therefore, it is necessary to study the long-term consolidation behavior of Busan clay considering stress conditions such as OC or NC states. In this study, a series of long-term consolidation tests were performed to investigate the consolidation characteristics of Busan clay for 20 days. The undisturbed clay samples were taken from 3 sites located in the Nakdong River estuary. The results showed that the creep rate of the Busan clay gradually decreased with time, which indicated that the secondary compression settlement decreased with time. In addition, the experimental results for 3 samples showed that the ratios were about 0.0363 and 0.051, respectively.

Characteristics of Anchor Behavior Resisting Buoyancy Forces in the Weathered Rock (풍화암에 시공된 부력저항 앵커의 거동특성)

  • Yoo, Nam-Jae;Lee, Gun-Chag;Jeong, Gil-Soo;Park, Byung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.698-705
    • /
    • 2005
  • This study contains actual scaled site experiments on mediation factors affecting ultimate pulling force of the buoyancy resisting anchor which is installed underground water level suffering buoyancy force and breaking mechanism. Site buoyancy test selected the buoyancy acting site where acting buoyancy to the station structure since the stream and reservoir is neighboured to the vicinity ground and executed site experiments leading to variation of anchoring length, drilling diameter and tendon diameter at the weathered rock ground. The test result showed that pulling force getting increased more and more proportionate to increase of anchoring length, drilling diameter and tendon diameter, and as a result of analysis for correlations between anchoring length-ultimate limited load and drilling diameter-ultimate load (on the basis of 254mm settlement), modulus of correlation showed very high relation 0.9 and 0.99 respectively and correlation formular showed the limited load is increasing proportionate to cubic meters of anchoring length as well as the ultimate load proportionate to alignment of drilling diameter. It is also showed that limited load increased about 42.5% from 392kN to 559kN as a result of change the tendon diameter to 36mm and 50mm.

  • PDF

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

Evaluation of In-situ Top Base Foundation Behavior using Calibration Chamber Test (모형토조실험을 통한 현장타설 팽이기초의 거동특성 연구)

  • Kim Hak-Moon;Kim Chan-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.697-703
    • /
    • 2006
  • In this research, model tests for in-situ Top-Base Foundation are carried out in other to investigate the load delivering mechanism and the incremental effect of bearing capacity. According to the result of model tests, the load-settlement curves of both in-situ Top-Base(In-situ TBF) and Precast Top-Base Foundation(PC-TBF) showed similar results in term of the ground movement and effect of bearing capacity. Also, the range of vertical stresses delivered into ground was decreased with Top-Base method regarding other types foundations.

  • PDF

Centrifuge Modelling of Slag Compaction Pile (슬래그 다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.191-197
    • /
    • 2002
  • This paper is experimental and numerical research results of performing centrifuge model tests to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. In order to find the geotechnical engineering characteristics of the soft clay and the slag used in centrifuge model experiments, basic soil property tests, consolidation test, permeability tests and triaxial compression tests were performed. For centrifuge model tests, slags with changing relative density were used and their bearing capacity, stress concentrations in between pile and soft clay, settlement characteristics, and failure modes were investigated. As a results of centrifuge model tests, it was found that the bearing, capacity of model was increased with increasing density of slag pile and general shear failures were occured. Miniature soil pressure gauges were installed on model pile and soft ground respectively and thus vertical stress acting on them were measured. Stress concentration ratio was found to be in the range of 2.0~3.0. Bearing capacity obtained from the model test with slag was greater than that from the model test with a sand having the identical layout to each other. Thus it was confirmed the slag was an appropriate substitution of pile for sand.

  • PDF

A Study on Application as fill materials of Bottom Ash and Tire Shred by Field Test Embankment (현장시험성토를 통한 석탄회 및 폐타이어의 성토재료 활용성 검토)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Tae-Yoon;Shin, Min-Ho;Hwang, Seon-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1032-1039
    • /
    • 2010
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we built real scale embankment with RBA(Reclamated Bottom Ash), TRBA(Tire shred-Reclamated Bottom Ash mixture), WS(Weathered Soil), BA(Bottom Ash screened by 5mm sieve) for monitoring the behavior such as settlement, lateral displacement and water content change. Furthermore, we are examining the ground water quality in the surrounding area of the test embankment.

  • PDF

The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition (지반특성을 고려한 연직배수재의 통수능 시험 및 선정)

  • Jung, Hun-Chul;Shin, Kyung-Ha;Jung, Ki-Moon;Huh, Jip
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF