• Title/Summary/Keyword: session-key establishment

Search Result 23, Processing Time 0.019 seconds

Reducing Cybersecurity Risks in Cloud Computing Using A Distributed Key Mechanism

  • Altowaijri, Saleh M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.

A Strong Authentication Scheme with User Privacy for Wireless Sensor Networks

  • Kumar, Pardeep;Gurtov, Andrei;Ylianttila, Mika;Lee, Sang-Gon;Lee, HoonJae
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.889-899
    • /
    • 2013
  • Wireless sensor networks (WSNs) are used for many real-time applications. User authentication is an important security service for WSNs to ensure only legitimate users can access the sensor data within the network. In 2012, Yoo and others proposed a security-performance-balanced user authentication scheme for WSNs, which is an enhancement of existing schemes. In this paper, we show that Yoo and others' scheme has security flaws, and it is not efficient for real WSNs. In addition, this paper proposes a new strong authentication scheme with user privacy for WSNs. The proposed scheme not only achieves end-party mutual authentication (that is, between the user and the sensor node) but also establishes a dynamic session key. The proposed scheme preserves the security features of Yoo and others' scheme and other existing schemes and provides more practical security services. Additionally, the efficiency of the proposed scheme is more appropriate for real-world WSNs applications.

A Study on Group Key Management based on Mobile Device ID in Ad-hoc network (Ad-hoc 네트워크에서 모바일 디바이스 아이디 기반의 그룹 키 관리에 대한 연구)

  • Kang, Seo-Il;Lee, Nam-Hoon;Lee, Im-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.540-549
    • /
    • 2009
  • An arbitrary mobile device configures Ad-hoc network to provide the transmission of a data and services using wireless communications. A mobile device requires authentication and encryption key management to securely communicate in the Ad-hoc network. This paper examines the trend of the authentication in the Ad-hoc network and the group key management and suggests the plan for ID-based mutual authentication and group key establishment. ID-based mutual authentication in proposed scheme uses zero knowledge in the absence of shared information and is applied to establish a session key and group key. In addition, the proposed scheme is applied to Ad-hoc network to increase the efficiency and the safety of security technology.

  • PDF

Efficient security mechanism in 3GPP-WLAN interworking (3GPP-WLAN interworking에서의 효율적인 보안 메커니즘)

  • 신상욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.137-144
    • /
    • 2004
  • 3GPP(3rd Generation Project Partnership)-WLAN(Wireless Local Area Network) interworking refers to the utilization of resources and access to services within the 3GPP system by the WLAN UE(User Equipment) and user respectively. The intent of 3GPP-WLAN Interworking is to extend 3GPP services and functionality to the WALN access environment. We propose an efficient mechanism for the setup of UE-initiated tunnels in 3GPP-WLAN interworking. The proposed mechanism is based on a secret key which is pre-distributed in the process of authentication and key agreement between UE and 3GPP AAA(Authentication, Authorization Accounting) server. Therefore it can avoid modular exponentiation and public key signature which need a large amount of computation in UE. Also the proposed scheme provides mutual authentication and session key establishment between UE and PDGW(Packet Data Gateway).

Mobile IPv6 Session Key Distribution Method At Radius-based AAAv6 System

  • Lee Hae Dong;Choi Doo Ho;Kim Hyun Gon
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.581-584
    • /
    • 2004
  • Currently, there are many subscriber access networks: PSTN, ADSL, Cellular Network, IMT200 and so on. To these service providers that provide above network service, it is important that they authenticate and authorize legal subscribers and account for their usage. At present, There exist the several protocols that Support AAA(Authentication, Authorization and Accounting) service : RADIUS, Diameter, TACACS+. Nowadays, RADIUS has used for AAA service widely. It has been extended to support other access network environment. So, we extend RADIUS to support environment of Mobile IPv6. Mobile IPv6 uses IPsec as a security mechanism, basically. But, IPsec is a heavy security technology for small, portable, mobile device. Especially, it is serious at IKE, the subset of IPsec. IKE is a key distribution protocol that distributes the key to the endpoints of IPsec. In t:lis paper, we extend RADIUS to support environment of Mobile IPv6 and simplify the IKE phase of IPsec by AAA system distributing the keys by using its security communication channel. Namely, we propose the key distribution method for IPsec SA establishment between mobile node and home agent. The suggested method was anticipated to be effective at low-power, low computing deyice. Finally, end users feel the faster authentication.

  • PDF

Secure Configuration Scheme of Pre-shared Key for Lightweight Devices in Internet of Things (사물인터넷의 경량화 장치를 위한 안전한 Pre-shared Key 설정 기술)

  • Kim, Jeongin;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • The IoT(Internet of things) technology enable objects around user to be connected with each other for sharing information. To support security is the mandatory requirement in IoT because it is related to the disclosure of private information but also directly related to the human safety. However, it is difficult to apply traditional security mechanism into lightweight devices. This is owing to the fact that many IoT devices are generally resource constrained and powered by battery. PSK(Pre-Shared Key) based approach, which share secret key in advance between communication entities thereafter operate security functions, is suitable for light-weight device. That is because PSK is costly efficient than a session key establishment approach based on public key algorithm. However, how to safely set a PSK of the lightweight device in advance is a difficult issue because input/output interfaces such as keyboard or display are constrained in general lightweight devices. To solve the problem, we propose and develop a secure PSK configuration scheme for resource constrained devices in IoT.

Mutual Authentication Protocol Using a Low Power in the Ubiquitous Computing Environment

  • Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.91-94
    • /
    • 2004
  • Ubiquitous sensor network is to manage and collect information autonomously by communicating user around device. Security requirements in Ubiquitous based on sensor network are as follows: a location of sensor, a restriction of performance by low electric power, communication by broadcasting, etc. We propose new mutual authentication protocol using a low power of sensor node. This protocol solved a low power problem by reducing calculation overload of sensor node using two steps, RM(Register Manager) and AM(Authentication Manager). Many operations performing the sensor node itself have a big overload in low power node. Our protocol reduces the operation number from sensor node. Also it is mutual authentication protocol in Ubiquitous network, which satisfies mutual authentication, session key establishment, user and device authentication, MITM attack, confidentiality, integrity, and is safe the security enemy with solving low electric power problem.

  • PDF

An Authentication Protocol-based Multi-Layer Clustering for Mobile Ad Hoc Networks (이동 Ad Hoc 망을 위한 다중 계층 클러스터링 기반의 인증 프로토콜)

  • Lee Keun-Ho;Han Sang-Bum;Suh Heyi-Sook;Lee Sang-Keun;Hwang Chong-Sun
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.310-323
    • /
    • 2006
  • In this paper, we describe a secure cluster-routing protocol based on a multi-layer scheme in ad hoc networks. We propose efficient protocols, Authentication based on Multi-layer Clustering for Ad hoc Networks (AMCAN), for detailed security threats against ad hoc routing protocols using the selection of the cluster head (CH) and control cluster head (CCH) using a modification of cluster-based routing ARCH and DMAC. This protocol provides scalability of Shadow Key using threshold authentication scheme in ad hoc networks. The proposed protocol comprises an end-to-end authentication protocol that relies on mutual trust between nodes in other clusters. This scheme takes advantage of Shadow Key using threshold authentication key configuration in large ad hoc networks. In experiments, we show security threats against multilayer routing scheme, thereby successfully including, establishment of secure channels, the detection of reply attacks, mutual end-to-end authentication, prevention of node identity fabrication, and the secure distribution of provisional session keys using threshold key configuration.

Improving the Performance of Mutual Authentication and Session Key Agreement Protocols for Mobile Communication (이동 통신 환경에서의 상호인증 및 세션키 공유 프로토콜의 성능 향상)

  • Lee, Seung-Won;Hong, Seong-Min;Yun, Hyeon-Su;Jo, Yu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1391-1400
    • /
    • 1999
  • 이동 통신은 대기를 전달매체로 하고 이동단말기를 사용하기 때문에 가로채기나 불법사용과 같은 공격에 취약하다. 이를 극복하기 위해, 이동 통신 환경에서 이동단말기와 기지국 사이에 안전한 통신을 제공하기 위한 많은 프로토콜들이 제안되어왔다. 그러나 이동단말기의 부족한 계산능력과 전력량 때문에 공개키를 이용한 프로토콜들은 많은 장점에도 불구하고 충분히 활용되지 못했다. 본 논문에서는 이동 통신 환경에서 기지국과 이동단말기 사이의 상호인증 및 세션키 공유 프로토콜들의 성능을 향상시킬 수 있는 기법을 제안한다. 본 논문에서 제안하는 기법은 이동단말기의 비밀 정보를 기지국에게 드러나게 하지 않으면서 많은 계산을 기지국으로 하여금 대신 수행하도록 하는 것이다. 제안된 기법은 기존의 프로토콜들을 최대 5배까지 성능을 향상시키며 해당하는 만큼 이동단말기의 전력량 소모를 감소시킬 수있다.Abstract Mobile communication is more vulnerable to security attacks such as interception and unauthorized access than fixed network communication. To overcome these problems, many protocols have been proposed to provide a secure channel between a mobile station and a base station. However, these public-key based protocols have not been fully utilized due to the poor computing power and small battery capacity of mobile stations. In this paper, we propose techniques for accelerating public-key based key establishment protocols between a mobile station and a base station. The proposed techniques enable a mobile station to borrow computing power from a base station without revealing its secret information. The proposed schemes accelerate the previous protocols up to five times and reduce the amount of power consumption of mobile stations.

A Secure Health Data Transmission Protocol Using Identity-Based Proxy Re-Encryption in Remote Healthcare Monitoring System (원격건강정보 모니터링 시스템에서 신원기반 프록시 재암호화 기법을 이용한 건강정보 전송 보안 프로토콜)

  • Noh, Si-Wan;Park, Youngho;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The remote healthcare monitoring system enables a doctor to diagnose and monitor patient's health problem from a distance. Previous researches have focused on key establishment method between a patient and a particular doctor to solve personal health information disclosure problem in data transmission process. However, when considering a misdiagnosis of doctor, the result of a diagnosis by a many doctors is more reliable. In previous work, in order to select multiple doctors, patient should generate shared key for each chosen doctor and perform many times encryptions. Therefore, in this paper, we propose a secure data transmission protocol for receiving diagnosis from multiple doctors using identity-based proxy re-encryption scheme. In proposed protocol, a patient don't need key management work for session key. Also, monitoring server performs re-encryption process on behalf of patient. So, we can reduce computational burden of patient in previous work.