• 제목/요약/키워드: servo compensator

검색결과 92건 처리시간 0.022초

피이드포워드 보상기를 갖는 강인한 선형 다변수 최적 모델 추종 서보계의 구성에 관한 연구 (Design of Robust Linear Multivariable Optimal Model Following Servo System Incorporating Feedforward Compensator)

  • 황창선;김정택;김동완;김문수;이경홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.338-340
    • /
    • 1993
  • In this paper, the method for designing a robust linear multivariable model following servo system is proposed. This model following servo system for the (n)th order reference input and the (n)th order disturbance is treated, and is designed so that the (n)th order response of the plant should be kept close to the (n)th order response of the given model by LQ(Linear Quadratic) optimal regulator approach. It is proved that the characteristics of the model following servo system is robust in the presence of the disturbances and the parameter perturbations of the plant dynamics.

  • PDF

직류서보시스템을 위한 상태관측기를 갖는 편차적분 가변구조제어기 (Observer-Based IEVSC for a DC Servo System)

  • 박영진;장성수;나상훈;이기상;홍순찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.873-876
    • /
    • 1993
  • A scheme of IEVSC(Integral Error Variable Structure Controller) is proposed for the DC servo systems with the disturbances which does not satisfy the matching condition. The structure of IEVSC is composed of state observer, VSC, and servo compensator which is designed for the output variable enhances the robustness against all type of disturbances. The performances of proposed IEVSC are verified through simulations for the DC servo motor.

  • PDF

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

비선헝 마찰 보상기를 이용한 램프추종 서보제어기에 관한 연구 (A study on the ramp tracking servo controller using nonlinear friction compensator)

  • 최승환;임동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.426-428
    • /
    • 1998
  • In this paper, a ramp tracking controller design method is proposed for the systems with nonlinear frictions. The objective is to design a controller which is capable of tracking a ramp reference input without steady state error. The controller is composed of a linear controller, integrators for error compensation, and a friction compensator. The compensator estimates the parameters of friction model. The friction parameters are estimated using two different method. Simulation and experimental results show that the proposed method is effective.

  • PDF

강인 내부 보상기를 이용한 새로운 강인 제어기 설계 (A Novel Robust Controller Design using Robust Internal-loop Compensator)

  • 최현택;서일홍
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.987-995
    • /
    • 1999
  • A new robust controller design methodology for single-input single-output systems is proposed, where the proposed controller consists of a conventional or optimal servo controller at the outer loop as well as the robust internal-loop compensator(RIC) to eliminate the model uncertainty and external disturbance. It is shown that RIC with finite gain can make actual systems be nominal models within a prespecified error bound. And, it is also shown that RIC-based system is robustly stable regardless of input saturation. Several numerical examples are illustrated to show validities of the proposed robust controller.

  • PDF

Multirate 샘플링을 이용한 CDBC의 설계 (Design of a CDBC Using Multirate Sampling)

  • 김진용;김성열;이금원;이준모
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어 (Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation)

  • 김봉근;최현택;정완균;서일홍;송중호
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현 (Implementation of the robust speed control system for DC servo motor using TDF compensator method)

  • 김동완
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

슬라이딩 제어기법을 이용한 교류 서보 시스템의 속도제어 (Speed control of AC servo system using a sliding control techniques)

  • 이제희;허욱열
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.115-120
    • /
    • 1996
  • In this paper, a sliding mode controller which is characterized by high accuracy, fast response and robustness is applied to speed control of AC-SERVO motor. The control input is changed to the continuous one in the boundary layer to reduce the chattering phenomenon, and the boundary layer converges to zero when the state variables of system reach to steady state values. The integral compensator is added to reduce steady state error and to provide the continuous torque reference. The acceleration which is necessary for the sliding plane is estimated by an obsever. Sliding surface is included in control input to enhance the robustness and transient response without increasing sliding mode controller gain. The proposed controller is implemented by DSP(digital signal processor). The effectiveness of the proposed scheme is demonstrated through experimental works.

  • PDF

신경회로망을 이용한 공압 서보실린더의 운동제어 (Motion Control of Pneumatic Servo Cylinder Using Neural Network)

  • 조승호
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.