• Title/Summary/Keyword: service user

Search Result 6,619, Processing Time 0.034 seconds

An Empirical Study on the Effects of Venture Company's Website Properties on Bounce Rate (벤처기업 웹사이트의 속성이 웹사이트 이탈률에 미치는 영향에 관한 실증연구)

  • Yun Do Hwang;Tae Kwan Ha
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.67-79
    • /
    • 2023
  • The bounce rate is the rate at which a user leaves immediately after visiting, and this study aimed to find out what attributes of a website affect the bounce rate. Web site evaluation items were defined as a total of 4 items and 27 evaluation attributes, including usability, information, service interaction, and technology, so that they can be commonly applied to venture companies in various industries through prior research. As a result of the study, 6 website attributes that affect the bounce rate were verified to be significant by discriminant analysis and decision tree analysis. Suggestions to reduce the bounce rate of venture business websites through this study are as follows. First, the path name of the website is displayed as mandatory and a pull-down menu function is added to facilitate movement to other pages. Second, it is good to expose core content that can attract users' attention in the form of a banner, and place internal link banners in the right place on sub-pages. Third, external links should be linked to a new window so that they do not leave the current page immediately so that they can be re-entered. Lastly, it is recommended to expose the contact information of the person in charge and consultation function as direct information for communication with customers, but if individual response is difficult, at least the consultation function must be added. These suggestions are expected to be of practical help in various fields such as website development, operation, and marketing. However, in special cases, a high bounce rate may be normal, so it should be considered according to the situation.

  • PDF

Event Log Analysis Framework Based on the ATT&CK Matrix in Cloud Environments (클라우드 환경에서의 ATT&CK 매트릭스 기반 이벤트 로그 분석 프레임워크)

  • Yeeun Kim;Junga Kim;Siyun Chae;Jiwon Hong;Seongmin Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.263-279
    • /
    • 2024
  • With the increasing trend of Cloud migration, security threats in the Cloud computing environment have also experienced a significant increase. Consequently, the importance of efficient incident investigation through log data analysis is being emphasized. In Cloud environments, the diversity of services and ease of resource creation generate a large volume of log data. Difficulties remain in determining which events to investigate when an incident occurs, and examining all the extensive log data requires considerable time and effort. Therefore, a systematic approach for efficient data investigation is necessary. CloudTrail, the Amazon Web Services(AWS) logging service, collects logs of all API call events occurring in an account. However, CloudTrail lacks insights into which logs to analyze in the event of an incident. This paper proposes an automated analysis framework that integrates Cloud Matrix and event information for efficient incident investigation. The framework enables simultaneous examination of user behavior log events, event frequency, and attack information. We believe the proposed framework contributes to Cloud incident investigations by efficiently identifying critical events based on the ATT&CK Framework.

A Design of an NCS-Based Job Matching System for the Disability

  • Jung-Youn Park;Min-Ji Kim;Jin-Ui Kim;Jin-Seop Yoo;Eun-Mi Mun;Hee-Young Nam;Won Joo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.121-130
    • /
    • 2024
  • In this paper, we propose and design an NCS-based job matching system for individuals with disabilities. This system allows users with disabilities to access it, input basic information (personal and disability-related details), and take a simple test related to job performance. The system then provides NCS job-related information appropriate to their type and degree of disability. To effectively link various NCS-based jobs, it is essential to consider the degree of disability for each type of disability. However, most evaluation tools target specific types of disabilities or assess the vocational abilities of individuals with disabilities in a limited manner, focusing only on cognitive levels or certain physical functions. This makes it challenging to apply these tools to an NCS-based job matching system for individuals with disabilities. Therefore, in this paper, we utilize the ICF coresets for VR to assess the cognitive levels or physical functions required for performing specific jobs. Additionally, we use the NCS vocational competency evaluation tools to determine the levels of vocational competencies required for performing specific jobs. By doing so, we match NCS-based jobs according to the type and degree of disability. The proposed NCS-based job matching system relies on the user's interaction with the system, which may pose challenges for visually impaired individuals or those with intellectual and autism spectrum disabilities who have low literacy levels. Enhancing the accessibility of this system could enable individuals with disabilities to receive recommendations for NCS-based jobs that suit their vocational abilities.

A Study on the User-Based Small Fishing Boat Collision Alarm Classification Model Using Semi-supervised Learning (준지도 학습을 활용한 사용자 기반 소형 어선 충돌 경보 분류모델에대한 연구)

  • Ho-June Seok;Seung Sim;Jeong-Hun Woo;Jun-Rae Cho;Jaeyong Jung;DeukJae Cho;Jong-Hwa Baek
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.358-366
    • /
    • 2023
  • This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.

Research on functional area-specific technologies application of future C4I system for efficient battlefield visualization (미래 지휘통제체계의 효율적 전장 가시화를 위한 기능 영역별 첨단기술 적용방안)

  • Sangjun Park;Jungho Kang;Yongjoon Lee;Jeewon Kim
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.109-119
    • /
    • 2023
  • C4I system is an integrated battlefield information system that automates the five elements of command, control, communications, computers, and information to efficiently manage the battlefield. C4I systems play an important role in collecting and analyzing enemy positions, situations, and operational results to ensure that all services have the same picture in real time and optimize command decisions and mission orders. However, the current C4I has limitations whenever a new weapon system is introduced, as it only provides battlefield visualization in a single area focusing on the battlefield situation for each military service. In a future battlefield that expands not only to land, sea, and air domains but also to cyber and space domains, improved command and control decisions will be possible if organic data from various weapon systems is gathered to quickly visualize the battlefield situation desired by the user. In this study, the visualization technology applicable to the future C4I system is divided into map area, situation map area, and display area. The technological implementation of this future C4I system is based on various data and communication means such as 5G networks, and is expected to enable hyper-connected battlefield visualization that utilizes a variety of high-quality information to enable realistic and efficient battlefield situation awareness.

Algorithm Development for Extract O/D of Air Passenger via Mobile Telecommunication Bigdata (모바일 통신 빅데이터 기반 항공교통이용자 O/D 추출 알고리즘 연구)

  • Bumchul Cho;Kihun Kwon
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • Current analysis of air passengers mainly relies on statistical methods, but there are limitations in analyzing detailed aspects such as travel routes, number of regional passengers and airport access times. However, with the advancement of big data technology and revised three data acts, big data-based transportation analysis has become more active. Mobile communication data, which can precisely track the location of mobile phone terminals, can serve as valuable analytical data for transportation analysis. In this paper, we propose a air passenger Origin/Destination (O/D) extraction algorithm based on mobile communication data that overcomes the limitations of existing air transportation user analysis methods. The algorithm involves setting airport signal detection zones at each airport and extracting air passenger based on their base station connection history within these zones. By analyzing the base station connection data along the passenger's origin-destination paths, we estimate the entire travel route. For this paper, we extracted O/D information for both domestic and international air passengers at all domestic airports from January 2019 to December 2020. To compensate for errors caused by mobile communication service provider market shares, we applied a adjustment to correct the travel volume at a nationwide citizen level. Furthermore correlation analysis was performed on O/D data and aviation statistics data for air traffic users based on mobile communication data to verify the extracted data. Through this, there is a difference in the total amount (4.1 for domestic and 4.6 for international), but the correlation is high at 0.99, which is judged to be useful. The proposed algorithm in this paper enables a comprehensive and detailed analysis of air transportation users' travel behavior, regional/age group ratios, and can be utilized in various fields such as formulating airport-related policies and conducting regional market analysis.

Development of an AI Model to Determine the Relationship between Cerebrovascular Disease and the Work Environment as well as Analysis of Consistency with Expert Judgment (뇌심혈관 질환과 업무 환경의 연관성 판단을 위한 AI 모델의 개발 및 전문가 판단과의 일치도 분석)

  • Juyeon Oh;Ki-bong Yoo;Ick Hoon Jin;Byungyoon Yun;Juho Sim;Heejoo Park;Jongmin Lee;Jian Lee;Jin-Ha Yoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.3
    • /
    • pp.202-213
    • /
    • 2024
  • Introduction: Acknowledging the global issue of diseases potentially caused by overwork, this study aims to develop an AI model to help workers understand the connection between cerebrocardiovascular diseases and their work environment. Materials and methods: The model was trained using medical and legal expertise along with data from the 2021 occupational disease adjudication certificate by the Industrial Accident Compensation Insurance and Prevention Service. The Polyglot-ko-5.8B model, which is effective for processing Korean, was utilized. Model performance was evaluated through accuracy, precision, sensitivity, and F1-score metrics. Results: The model trained on a comprehensive dataset, including expert knowledge and actual case data, outperformed the others with respective accuracy, precision, sensitivity, and F1-scores of 0.91, 0.89, 0.84, and 0.87. However, it still had limitations in responding to certain scenarios. Discussion: The comprehensive model proved most effective in diagnosing work-related cerebrocardiovascular diseases, highlighting the significance of integrating actual case data in AI model development. Despite its efficacy, the model showed limitations in handling diverse cases and offering health management solutions. Conclusion: The study succeeded in creating an AI model to discern the link between work factors and cerebrocardiovascular diseases, showcasing the highest efficacy with the comprehensively trained model. Future enhancements towards a template-based approach and the development of a user-friendly chatbot webUI for workers are recommended to address the model's current limitations.

Design and Implementation of a Fault-Tolerant Caching System for Dynamic Heterogeneous Cache Server Networks (동적 이기종 캐시 서버 네트워크에서의 내결함성 캐싱 시스템 설계 및 구현)

  • Hyeon-Gi Kim;Gyu-Sik Ham;Jin-Woo Kim;Soo-Young Jang;Chang-Beom Choi
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.458-464
    • /
    • 2024
  • This study proposes a fault-tolerant caching system to address the issue of caching content imbalance caused by the dynamic departure and participation of cache servers in a heterogeneous cache server network, and validates it in both real and virtual environments. With the increase of large-scale media content requiring various types and resolutions, the necessity of cache servers as key components to reduce response time to user requests and alleviate network load has been growing. In particular, research on heterogeneous cache server networks utilizing edge computing and low-power devices has been actively conducted recently. However, in such environments, the irregular departure and participation of cache servers can occur frequently, leading to content imbalance among the cache servers deployed in the network, which can degrade the performance of the cache server network. The fault-tolerant caching algorithm proposed in this study ensures stable service quality by maintaining balance among media contents even when cache servers depart. Experimental results confirmed that the proposed algorithm effectively maintains content distribution despite the departure of cache servers. Additionally, we built a network composed of seven heterogeneous cache servers to verify the practicality of the proposed caching system and demonstrated its performance and scalability through a large-scale cache server network in a virtual environment.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

An exploratory study on Social Network Services in the context of Web 2.0 period (웹 2.0 시대의 SNS(Social Network Service)에 관한 고찰)

  • Lee, Seok-Yong;Jung, Lee-Sang
    • Management & Information Systems Review
    • /
    • v.29 no.4
    • /
    • pp.143-167
    • /
    • 2010
  • Diverse research topics relating to Social Network Services (SNS) such as, social affective factors in relationships among internet users, social capital value of SNS, comparing attributes why users are intending to participate in SNS, user's lifestyle and their preferences, and the exploratory seeking potential of SNS as a social capital need to be focused on. However, these researches that have been undertaken only consider facts at a particular period of the changing computing environment. In accordance with this indispensability, the integrated view on what technical, social and business characteristics and attributes need to be acknowledged. The purpose of this study is to analyze the evolving attributes and characteristics of SNS from Web 1.0 to Mobile web 2.0 through the Web 2.0 and Mobile 1.0 period. Based on the relevant literature, the attributes that drive the changing technological, social and business aspects of SNS have been developed and analyzed. This exploratory study analyzed major attributes and relationships between SNS and users by changing the paradigms which represented each period. It classified and chronicled each period by representing paradigms and deducted the attributes by considering three aspects such as technological, social and business administration. The major findings of this study are, firstly, the web based computing environment has been changed into the platform attribute for users in the aspect of technology. Users can only read, listen and view information through the web site in the early stages, but now it is possible that users can create, modify and distribute all kinds of information. Secondly, the few knowledge producers of web services have been changed into a collective intelligence by groups of people in the aspect of society. Information authority has been distributed and there is no limit to its spread. Many businesses recognized the potential of the SNS and they are considering how to utilize these advantages toward channel of promotion and marketing. Thirdly, the conventional marketing channel has been changed into oral transmission by using SNS. The market of innovative mobile technology such as smart phones, which provide convenience and access-ability toward customers, has been enlarged. New opportunities to build friendly relationship between business and customers as a new marketing chance have been created. Finally, the role of the consumer has been changed into the leading role of a prosumer. Users can create, modify and distribute information, and are performing the dual role of customer and producer.

  • PDF