• Title/Summary/Keyword: service robots

Search Result 289, Processing Time 0.022 seconds

Classification of Service Quality for HMR unmanned store business (HMR 무인매장 서비스 품질 분류에 관한 연구)

  • Jong Won Lee
    • Journal of Service Research and Studies
    • /
    • v.13 no.2
    • /
    • pp.41-61
    • /
    • 2023
  • The universal form of life in the era of the 4th industrial revolution can probably be summarized as the keyword "non-face-to-face". In particular, in terms of consumption activities, face-to-face contact is gradually changing to a system that minimizes, and offline stores are rapidly changing to non-contact services through kiosks and robots. The social structure is also changing with the passage of time, and most fundamentally, our dietary consumption patterns are changing. In particular, the increase in single-person households and the aging population are having a great impact on changes in the food service industry, which is closely related to dietary life. The HMR (Home Meal Replacement) market has grown significantly as the labor of cooking at home has decreased and the use of substitute foods has increased. As the size of the market has grown, the types of businesses that provide products have also diversified. The development of technology, non-face-to-face culture, and corporate management efficiency are intertwined, and unmanned stores are spreading recently. In this study, service quality attributes of HMR unmanned stores, where competition is gradually intensifying, are classified, and service quality classification using the Kano model and Timko's customer satisfaction coefficient are calculated to provide implications for service management based on customer satisfaction. As a result of the analysis, 'products with short cooking time' and 'variety of products (menu)' were classified as attractive qualities, and 'cleanliness inside/outside of the store' and 'products at reasonable prices' were classified as unified quality. In addition, 'convenience of self-checkout process' was classified as a natural quality, and 'convenience of in-store passage' was classified as an indifferent quality. Furthermore, when the service factor was satisfied within the HMR unmanned store, the factor with the highest satisfaction coefficient was 'product (menu) variety', and the factor with the highest dissatisfaction factor was 'convenience of self-checkout process'. Through the results of this study, it is intended to derive priorities in service quality management of HMR unmanned stores and provide strategic implications for related businesses.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

Object Position Tracking Algorithm of Intelligent Robot using Sound Source and Absolute Orientation (음원과 절대 방위를 이용한 지능형 로봇의 목표물 위치 추적 알고리즘)

  • Park, Kyoung-Jin;Lee, Hae-Gang;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.208-213
    • /
    • 2007
  • As recent research on home service robot has been performed actively in these days. It becomes very important for the robot to react upon voice and sound source, and then tracks an object position in dynamic environment like a home. When people choose a path for finding a destination of objects, in case of sound, they track a direction of the sound source. Or in case as a position of the object be girded with a point on map, people track the position according to absolute orientation of the present position and the sound source position. In this paper, In this manner we had views on what people decide own direction when they react one's voice or go some directions. We suggest a algorithm that intelligent mobile robots on which we installed a sound source tracking board and a digital magnetic compass board go some object's positions by the direction of sound source and absolute orientation.

Indoor Localization Scheme of a Mobile Robot Applying REID Technology (RFID 응용 기술을 이용한 이동 로봇의 실내 위치 추정)

  • Kim Sung-Bu;Lee Dong-Hui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.996-1001
    • /
    • 2005
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from. Three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can get the ultrasonic signals from only one or two beacons, because of the obstacles located along the moving path. Therefore, in this paper, as one of our dedicated contribution, the position estimation scheme with less than three sensors has been developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

Navigation Control of Mobile Robot based on VFF to Avoid Local-Minimum in a Corridor Environment (복도환경의 지역최소점 회피가 가능한 VFF 기반의 이동로봇 주행제어)

  • Jin, Tae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.759-764
    • /
    • 2011
  • This paper deals with the method of using the amended virtual force field technique to avoidance the front environment(wall, obstacles etc.) in navigating by using the environmental informations recognized by a ultrasonic-ring and pan/tilt CCD camera equipped on a mobile robot. we will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. It is proposed the rusult from the experimental run based on a virtual force field(VFF) method to support the validity of the aforementioned architecture of mobile service robot for local navigation and obstacle avoidance for autonomous mobile robots. We will conclude by discussing some possible future extensions of the project. The results show that the proposed algorithm is apt to identify obstacles in an indoor environments to guide the robot to the goal location safely.

An Intention-Response Model based on Mirror Neuron and Theory of Mind using Modular Behavior Selection Networks (모듈형 행동선택네트워크를 이용한 거울뉴런과 마음이론 기반의 의도대응 모델)

  • Chae, Yu-Jung;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.320-327
    • /
    • 2015
  • Although service robots in various fields are being commercialized, most of them have problems that depend on explicit commands by users and have difficulty to generate robust reactions of the robot in the unstable condition using insufficient sensor data. To solve these problems, we modeled mirror neuron and theory of mind systems, and applied them to a robot agent to show the usefulness. In order to implement quick and intuitive response of the mirror neuron, the proposed intention-response model utilized behavior selection networks considering external stimuli and a goal, and in order to perform reactions based on the long-term action plan of theory of mind system, we planned behaviors of the sub-goal unit using a hierarchical task network planning, and controled behavior selection network modules. Experiments with various scenarios revealed that appropriate reactions were generated according to external stimuli.

Development of a Tactile Sensor Array with Flexible Structure Using Piezoelectric Film

  • Yu, Kee-Ho;Kwon, Tae-Gyu;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1222-1228
    • /
    • 2002
  • This research is the development of a flexible tactile sensor array for service robots using PVDF (polyvinylidene fluoride) film for the detection of a contact state in real time. The prototype of the tactile sensor which has 8${\times}$8 array using PVDF film was fabricated. In the fabrication procedure, the electrode patterns and the common electrode of the thin conductive tape were attached to both sides of the 281$\mu\textrm{m}$ thickness PVDF film using conductive adhesive. The sensor was covered with polyester film for insulation and attached to the rubber base for a stable structure. The proposed fabrication method is simple and easy to make the sensor. The sensor has the advantages in the implementing for practical applications because its structure is flexible and the shape of the each tactile element can be designed arbitrarily. The signals of a contact force to the tactile sensor were sensed and processed in the DSP system in which the signals are digitized and filtered. Finally, the signals were integrated for taking the force profile. The processed signals of the output of the sensor were visualized in a personal computer, and the shape and force distribution of the contact object were obtained. The reasonable performance for the detection of the contact state was verified through the sensing examples.

Deterministic Real-Time Task Scheduling (시간 결정성을 보장하는 실시간 태스크 스케줄링)

  • Cho, Moon-Haeng;Lee, Soong-Yeol;Lee, Won-Yong;Jeong, Geun-Jae;Kim, Yong-Hee;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.73-82
    • /
    • 2007
  • In recent years, embedded systems have been expanding their application domains from traditional applications (such as defense, robots, and artificial satellites) to portable devices which execute more complicated applications such as cellular phones, digital camcoders, PMPs, and MP3 players. So as to manage restricted hardware resources efficiently and to guarantee both temporal and logical correctness, every embedded system use a real-time operating system (RTOS). Only when the RTOS makes kernel services deterministic in time by specifying how long each service call will take to execute, application programers can write predictable applications. Moreover, so as for an RTOS to be deterministic, its scheduling and context switch overhead should also be predictable. In this paper, we present the complete generalized algorithm to determine the highest priority in the ready list with 22r levels of priorities in a constant time without additional memory overhead.

Precise Indoor Localization System for a Mobile Robot Using Auto Calibration Algorithm (Auto Calibration Algorithm을 이용한 이동 로봇의 정밀 위치추정 시스템)

  • Kim, Sung-Bu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the absolute location of the moving objects subjected to large errors. To implement a precise and convenient localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. Since it is not easy to install the beacons at a specific position precisely, there exists a large localization error and the installation time takes long. To overcome these problems, and provide a precise and convenient localization system, a new auto calibration algorithm is developed in this paper. Also the extended Kalman filter has been adopted for improving the localization accuracy during the mobile robot navigation. The localization accuracy improvement through the proposed auto calibration algorithm and the extended Kalman filter has been demonstrated by the real experiments.

  • PDF

Audio-Visual Fusion for Sound Source Localization and Improved Attention (음성-영상 융합 음원 방향 추정 및 사람 찾기 기술)

  • Lee, Byoung-Gi;Choi, Jong-Suk;Yoon, Sang-Suk;Choi, Mun-Taek;Kim, Mun-Sang;Kim, Dai-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.