• Title/Summary/Keyword: service robots

Search Result 287, Processing Time 0.037 seconds

Implementation of Ubiquitous Robot in a Networked Environment (네트워크 환경에서 유비쿼터스 로봇의 구현)

  • Kim Jong-Hwan;Lee Ju-Jang;Yang Hyun-Seng;Oh Yung-Hwan;Yoo Chang-Dong;Lee Jang-Myung;Lee Min-Cheol;Kim Myung-Seok;Lee Kang-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1051-1061
    • /
    • 2005
  • This paper proposes a ubiquitous robot, Ubibot, as an integration of three forms of robots: Software robot (Sobot), Embedded robot (Embot) and Mobile robot (Mobot). A Sobot is a virtual robot, which has the ability to move to any place or connect to any device through a network in order to overcome spatial limitations. It has the capacity to interpret the context and thus interact with the user. An Embot is embedded within the environment or within physical robots. It can recognize the locations of and authenticate the user or robot, and synthesize sensing information. Also it has the ability to deliver essential information to the user or other components of Ubibot by using various types of output devices. A Mobot provides integrated mobile service. In addition, Middleware intervenes different protocols between Sobot, Embot, and Mobot in order to incorporate them reliably. The services provided by Ubibot will be seamless, calm and context-aware based on the combination of these components. This paper presents the basic concepts and structure of Ubibot. A Sobot, called Rity, is introduced in order to investigate the usability of the proposed concepts. Rity is a 3D synthetic character which exists in the virtual world, has a unique IP address and interacts with human beings through Vision Embot, Sound Embot, Position Embot and Voice Embot. Rity is capable of moving into a Mobot and controlling its mobility. In doing so, Rity can express its behavior in the virtual world, for example, wondering or moving about in the real world. The experimental results demonstrate the feasibility of implementing a Ubibot in a networked environment.

A Disital Siver Care for the Health and Rehabilitation of the Elderly (노인 건강과 재활을 위한 디지털 실버케어)

  • Kang, Seungae
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.81-86
    • /
    • 2019
  • This study introduces trends on silver care implemented with the fourth industrial revolution technology, and discusses the use of digital technology for elderly health and rehabilitation by reviewing relevant literature to examine and present directions for future digital-based silver care commercialization. First, health smart home, which is a smart residential service available through digital technology or IT technology that supports independent living in your home, is available. Second, there are technical services using artificial intelligence(AI) and robots. Robots based on advanced intelligence can serve as an assistant for the health and rehabilitation of senior citizens by supporting services that enable the daily lives of senior, checking their health conditions, and high-quality medical care. For the commercialization of these silver care systems, information and services appropriate to the current situation, such as the physical ability and health status of the elderly, should be provided, and it would be desirable to gradually expand the use of essential technology to reflect the needs of the elderly in use so that the digital alienated.

ROBOPPRESSO: Design and Implementation of Robot-Barista Services Using COBOT and IoT (ROBOPRESSO: 협동로봇과 IoT 기술을 활용한 로봇바리스타 서비스의 설계 및 구현)

  • Lee, Song-Joo;Kim, Dong-Hyun;Jeong, Jonpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • This paper aims to show that cooperative robots, which have only been used in manufacturing sites, are expanding their scope of use in daily living spaces due to the expansion of non-face-to-face services. By combining robots and IoT technologies in terms of diversifying services in daily life and customized service areas, it is expected that the general public will also have easy access to smart technologies, and these technologies will be used in more areas. The robot barista system will provide customers with the services they want, monitoring, maintenance, and management of the system, making this paper convenient for customers, as well as managers who run stores, maintenance and repair, and engineers who design the system. This paper attempts to demonstrate this through a structure called Robopresso.

Segmentation of Pointed Objects for Service Robots (서비스 로봇을 위한 지시 물체 분할 방법)

  • Kim, Hyung-O;Kim, Soo-Hwan;Kim, Dong-Hwan;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • This paper describes how a person extracts a unknown object with pointing gesture while interacting with a robot. Using a stereo vision sensor, our proposed method consists of two stages: the detection of the operators' face, the estimation of the pointing direction, and the extraction of the pointed object. The operator's face is recognized by using the Haar-like features. And then we estimate the 3D pointing direction from the shoulder-to-hand line. Finally, we segment an unknown object from 3D point clouds in estimated region of interest. On the basis of this proposed method, we implemented an object registration system with our mobile robot and obtained reliable experimental results.

  • PDF

Estimating Human Walking Pace and Direction Using Vibration Signals (진동감지를 이용한 사용자 걸음걸이 인식)

  • Jeong, Eunseok;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.481-485
    • /
    • 2014
  • In service robots, a number of human movements are analyzed using a variety of sensors. Vibration signals from walking movements of a human provide useful information about the distance and the movement direction of the human. In this paper, we measure the intensity of vibrations and detect both human walking pace and direction. In our experiments, vibration signals detected by microphone sensors provide good estimation of the distance and direction of a human movement. This can be applied to HRI (Human-Robot Interaction) technology.

Mobile Robot Exploration in Indoor Environment Using Topological Structure with Invisible Barcodes

  • Huh, Jin-Wook;Chung, Woong-Sik;Nam, Sang-Yep;Chung, Wan-Kyun
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • This paper addresses the localization and navigation problem in the movement of service robots by using invisible two dimensional barcodes on the floor. Compared with other methods using natural or artificial landmarks, the proposed localization method has great advantages in cost and appearance since the location of the robot is perfectly known using the barcode information after mapping is finished. We also propose a navigation algorithm which uses a topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls, and many static obstacles. The proposed algorithm also has the advantage that errors which occur in each node are mutually independent and can be compensated exactly after some navigation using barcodes. Simulation and experimental results were performed to verify the algorithm in the barcode environment, showing excellent performance results. After mapping, it is also possible to solve the kidnapped robot problem and to generate paths using topological information.

  • PDF

Speaker Detection and Recognition for a Welfare Robot

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.835-838
    • /
    • 2003
  • Computer vision and natural-language dialogue play an important role in friendly human-machine interfaces for service robots. In this paper we describe an integrated face detection and face recognition system for a welfare robot, which has also been combined with the robot's speech interface. Our approach to face detection is to combine neural network (NN) and genetic algorithm (GA): ANN serves as a face filter while GA is used to search the image efficiently. When the face is detected, embedded Hidden Markov Model (EMM) is used to determine its identity. A real-time system has been created by combining the face detection and recognition techniques. When motivated by the speaker's voice commands, it takes an image from the camera, finds the face inside the image and recognizes it. Experiments on an indoor environment with complex backgrounds showed that a recognition rate of more than 88% can be achieved.

  • PDF

Experimental Research of Map Building and Localization at Human Co-existing Real Environments

  • Lee, Dong-Heui;Chung, Woo-Jin;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1184-1189
    • /
    • 2003
  • Map building and position estimation capabilities are practically indispensable for a mobile robot to execute its given tasks in its working environments. An autonomous map building method and a smart localization method is proposed in our previous works. The experimental verifications are carried out in this paper. We applied the proposed algorithms to mobile service robots in large-scale indoor buildings. Experimental results show that our strategy is reliable and feasible in tough conditions like non-polygonal and dynamic environments. The advantages of the algorithms are well-illustrated through real experiments.

  • PDF

A Novel Action Selection Mechanism for Intelligent Service Robots

  • Suh, Il-Hong;Kwon, Woo-Young;Lee, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2027-2032
    • /
    • 2003
  • For action selection as well as learning, simple associations between stimulus and response have been employed in most of literatures. But, for a successful task accomplishment, it is required that an animat can learn and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with sequential behaviors. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a network with behavioral motivations. The vertical path of the network represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.

  • PDF

Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.195-198
    • /
    • 2005
  • 최근 실내 환경에서 영상 정보를 사용하여 로봇이 서비스를 제공하기 위한 연구가 활발하다. 과거 영상 처리 접근 방법은 산업 환경과 같은 예측 가능한 환경을 바탕으로 미리 정의된 기하학적 모델을 통해 상황을 인식하였기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 정확도를 향상 시킴으로써 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의해서 가려져 있는 경우 대상 물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 작은 단위로 설계된 베이지안 네트워크들을 상황에 따라 결합하여 추론 모델이 구성되게 하였고 물체간의 관계를 효과적으로 표현하고 초기 확률 값을 단일하게 유지하기 위해 제안된 확률 값 설정 방법을 사용하였다. 실험은 물체 관계를 추론하는 모듈의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 82.8$\%$의 정확도를 보여주었다.

  • PDF