• 제목/요약/키워드: service robotics

검색결과 324건 처리시간 0.057초

The Impact of Robotics on Employment and Motivation of Employees in the Service Sector, with Special Reference to Health Care

  • Qureshi, Mohammed Owais;Syed, Rumaiya Sajjad
    • Safety and Health at Work
    • /
    • 제5권4호
    • /
    • pp.198-202
    • /
    • 2014
  • Background: The economy is being lifted by the new concept of robotics, but we cannot be sure of all the possible benefits. At this early stage, it therefore becomes important to find out the possible benefits/limitations associated with robotics, so that the positives can be capitalized, established, and developed further for the employment and motivation of employees in the health care sector, for overall economic development. The negatives should also be further studied and mitigated. Methods: This study is an exploratory research, based on secondary data, such as books on topics related to robotics, websites, public websites of concerned departments for data and statistics, journals, newspapers and magazines, websites of health care providers, and different printed materials (brochures, etc). Results: The impact of robotics has both positive and negative impacts on the employment and motivation of employees in the retail sector. So far, there has been no substantial research done into robotics, especially in the health care sector. Conclusion: Replacing employees with robots is an inevitable choice for organizations in the service sector, more so in the health care sector because of the challenging and sometimes unhealthy working environments, but, at the same time, the researchers propose that it should be done in a manner that helps in improving the employment and motivation of employees in this sector.

OPRoS-ROS간 데이터 교환 및 서비스 호출을 위한 브리지 (Bridge for Exchange of Data and Service Invocation Between OPRoS and ROS)

  • 이기원;박홍성
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.153-161
    • /
    • 2016
  • This paper proposes a bridge model for data exchange and service invocation between OPRoS and ROS platforms, shows the validity of the proposed model via applications, and compares the proposed model with the OPRoS platform and the ROS platform using performance measures such as data exchange time and service response time. The proposed model operates independently of OPRoS and ROS Platforms using its configuration file with mapping information among the OPRoS data/service port and the ROS topic/service. The configuration file makes easy connections between OPRoS data/service and ROS topic/service without changing the source code of the platform and components.

돌봄보조 로봇의 개발과 서비스에 대한 윤리적 고찰: 이승, 자세변환, 식사, 배설 돌봄보조 로봇을 중심으로 (Ethical Review of Development and Service with Care Assistance Robot: Focusing on Transfer, Repositioning, Feeding, and Toileting Care Assistance Robot)

  • 배영현
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.103-109
    • /
    • 2022
  • The purpose of this study is to ethical review on the development and service with care assistance robot. An integrative review concept analysis method was used. We analyzed the classification and role of service robots, the concept of the robot ethic and the care ethic. And there were derived the development and service about care assistance robot in ethical viewpoint. For improving current care problem, government had support to developing four types care assistance robots. But there were provided carefully care service due to the limitations of robot technology and lack of overall social awareness with care robot. In addition, in order to be successfully application in the field, care assistance robots were developed to provide high-quality care service that can consider to personal culture and living environment with the development of artificial intelligence and robot technology, as well as ethical care service.

Designing Factory Safety Monitoring Robot Using Microsoft Robotic Studio

  • Loh, Byoung-Gook
    • International Journal of Safety
    • /
    • 제7권1호
    • /
    • pp.1-4
    • /
    • 2008
  • Application of the Microsoft robotics studio (MSRS) to the design of a factory safety monitoring robot is presented. Basic structures of the MSRS and the service are introduced. The service is the key building block of the MSRS. Control of the safety monitoring robot is performed using four basic services: 1) the robot service which communicates with the embedded micro-processor and other services, 2) the sensor service that notifies the subscribing services of the change of the sensor value, 3) the motor service which controls the power levels to the motors, 4) the drive service which maneuvers the robot. With built-in capabilities of the MSRS, control of factory safety monitoring robot can be more easily performed.

프레즌스 및 openAPI를 활용한 URC서비스 플랫폼 (URC Service Platform based on presence and openAPI)

  • 배정일;김동훈;이현주;연승호
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.68-72
    • /
    • 2008
  • Combining robot and network gives us many advantages like lightweight hardware specification of robot, a various robot service, simple upgrade of robot, easy management and so on. Among these advantages, Presence service and openAPI are most important. Presence is simple but powerful service. It makes user to know the status information of robot and enables user to control robot from a remote place. OpenAPI which is also a feature of WEB2.0 enables $3^{rd}$ parties to make a various mashup service easily and rapidly. Finally presence and openAPI can help URC service to be ubiquitous and successful.

  • PDF

네트워크 로봇의 서비스 통합을 위한 템플릿 컴포넌트 (Template Components for Service Integration of Networked Robot)

  • 김주형;이호동;박귀태
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.69-77
    • /
    • 2011
  • In a large scale robot system, one of important problems is software integration, which involves three elements: modularity, reusability and stability. By these issues, the degree of convenience of system integration, its required time and the performance of the system stability can be determined. In addition, the convenience of system management can be determined by the degree of completion of service components. This paper explains the template based service component (TBSC) for the integration of service components in networked robot. The important characteristics of TBSC are automatical execution and recovery process by a PnP supporting robot framework, which helps a system operator to manage a robot system comfortably. For easy implementation and system stability, we provide a service component creator and a verification tool to developers.

Safe Arm Design with MR-based Passive Compliant Joints and Visco-elastic Covering for Service Robot Applications

  • Yoon Seong-Sik;Kang Sungchul;Yun Seung-kook;Kim Seung-Jong;Kim Young-Hwan;Kim Munsang
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1835-1845
    • /
    • 2005
  • In this paper a safe arm with passive compliant joints and visco-elastic covering is designed for human-friendly service robots. The passive compliant joint (PCJ) is composed of a magneto-rheological (MR) damper and a rotary spring. In addition to a spring component, a damper is introduced for damping effect and works as a rotary viscous damper by controlling the electric current according to the angular velocity of spring displacement. When a manipulator interacts with human or environment, the joints and cover passively operate and attenuate the applied collision force. The force attenuation property is verified through collision experiments showing that the proposed passive arm is safe in view of some evaluation measures.

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF

실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발 (Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots)

  • 김건희;김문상;정우진
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.