• 제목/요약/키워드: service load behavior

Search Result 174, Processing Time 0.031 seconds

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Long-term Behavior of Deck-plate Concrete Slab Reinforced with Steel Fiber (강섬유 보강 데크플레이트 콘크리트 슬래브의 장기 거동)

  • Hong, Geon-Ho;Hwang, Seung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2017
  • Recently, research on the development of a composite slab system for shorting the construction period by simplifying the process by omitting the form work and the reinforcement placing is underway. The purpose of this study is to evaluate the long-term behavior of a simplified slab system that replaces the form work and tensile reinforcement using structural deck-plate and replaces the temperature reinforcement using steel fiber reinforced concrete. In the conventional composite deck-plate slab method, w.w.f is generally used for crack control by drying shrinkage. But previous research results by various researchers were pointed out it is not effective to control the shrinkage and temperature cracking. In this study, the long-term cracking and structural behavior of steel fiber reinforced deck plate slab specimen with two continuous spans constructed under typical load conditions were evaluated. Experimental results showed that the number and width of long-term cracks decreased remarkably in the simplified slab specimen, and the deflection was also decreased compared with conventional RC slab specimen. However, in the continuous end of the slab where the negative moment is applied, it is analyzed that reinforced details are necessary to control the crack width in the service load and to recover deflection at load removal.

A Study on the Bond Behavior of Reinforced Concrete Beam (철근(鐵筋)콘크리트 보의 부착거동(附着擧動)에 관한 연구(硏究))

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.87-95
    • /
    • 1998
  • Cracking is considered to be one of the important factors in determining the durability of reinforced concrete structures. When the bending stress exceeds the modulus of rupture of the concrete, cracking form along the length of members. The total load is transferred across these cracks by the reinforcement, but the concrete between cracks is still capable of carrying stresses due to the bond between steel and concrete. This phenomenon is called the tension stiffening effect. The tension stiffening effect is affected by many variables, such as the bond stress, strength of concrete, interrocking of aggregate, type of steel, and dowel action of steel. Also, this tension stiffening effect is usually quite significant in beams under service loading, and must be taken into account in the calculation of deflection and crack widths. In this study, the experiment was carried out on types of specimen, strength of concrete, and steel ratio and finite element analysis were compared in terms of load-deflection relationship, crack pattern.

  • PDF

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.

Repair of Pre-cracked Reinforced Concrete (RC) Beams with Openings Strengthened Using FRP Sheets Under Sustained Load

  • Osman, Bashir H.;Wu, Erjun;Ji, Bohai;Abdulhameed, Suhaib S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.171-183
    • /
    • 2017
  • Strengthening reinforced concrete (RC) beams with openings by using aramid fiber reinforcement polymers (AFRP) on the beams' surfaces offers a useful solution for upgrading concrete structures to carry heavy loads. This paper presents a repairing technique of the AFRP sheets that effectively strengthens RC beams, controls both the failure modes and the stress distribution around the beam chords and enhances the serviceability (deflection produced under working loads be sufficiently small and cracking be controlled) of pre-cracked RC beams with openings. To investigate the possible damage that was caused by the service load and to simulate the structure behavior in the site, a comprehensive experimental study was performed. Two unstrengthened control beams, four beams that were pre-cracked before the application of the AFRP sheets and one beam that was strengthened without pre-cracking were tested. Cracking was first induced, followed by repair using various orientations of AFRP sheets, and then the beams were tested to failure. This load was kept constant during the strengthening process. The results show that both the preexisting damage level and the FRP orientation have a significant effect on strengthening effectiveness and failure mode. All of the strengthened specimens exhibited higher capacities with capacity enhancements ranging from 21.8 to 66.4%, and the crack width reduced by 25.6-82.7% at failure load compared to the control beam. Finally, the authors present a comparison between the experimental results and the predictions using the ACI 440.2R-08 guidelines.

An Experimental Study on the Flexural Behavior of Deck Plates with Metal Lath and Mortar (라스와 모르타르를 이용한 데크의 휨거동에 관한 실험적 연구)

  • Kim, Sung-Bae;Kim, Sung-Jin;Seo, Dong-Min;Kim, Sang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.117-125
    • /
    • 2008
  • In the domestic construction industry field nowadays, the usage of deck plates is currently increasing due to the lack of construction workers and the rised in construction cost. However, using deck plates manufactured by thin zinc galvanization in underground structures is criticised because it can lead to increase in maintenance cost caused by rust generation and water leakage. As a solution for this particular problem, deck plates created by Lath and Mortar instead of zinc galvanized steel sheets were developed. This paper deals with the experimental study on flexural behavior of deck plate using metal lath and mortar. Seventeen fullscale specimens were constructed and tested with different type of truss, the diameter of the top and bottom bar, and the thickness of slab. Tests results show that LAMO deck displayed equal performance such as zinc galvanized steel sheets.

Flexural Behavior of External Prestressed H-Beam (외부 긴장된 H형 보의 휨거동 특성)

  • Yang, Dong Suk;Lim, Sang Hun;Park, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Recently, prestressed H-Beam bridges with external unbonded Tendons are increasingly built. The mechanical behavior of prestressed steel H-beams is different from that of normal bonded PSC beams in a point of the slip of tendons at deviators and the change of tendon eccentricity that occurs, when service load are applied in external unbonded steel H-beams. The concept of prestressing steel structures has been widely considered, in spite of long and successful history of prestressing concrete members. In the study, The flexural test on prestressed steel H-beams has been performed in the various aspects of prestressed H-beam including the tendon type and profile. The load was plotted against the deflection and the strain respectively in the steel beam and prestressing bars. The value expected with the equation of internal force equilibrium and compatibility between the deflection of the bars and the H-beam was found to correlate well with the measured data.

Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite) (섬유보강 콘크리트(ECC)와 GFRP 보강근의 부착 특성)

  • Choi, Yun-Cheul;Park, Keum-Sung;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.809-815
    • /
    • 2011
  • An experimental investigations on the bond-slip properties of the steel and Glass Fiber Reinforced Polymer(GFRP) bars in engineered cementitious composite (ECC) with Polyvinyl Alcohol (PVA) fibers are presented. Total of 8 beam specimens prepared according to the Rilem procedures with 2% of PVA and PE fiber volume percentage and steel and GFRP reinforcements significantly changed the failure mechanism and slightly improved bond strength. The main objective of the tests was to evaluate the load versus displacement and load versus slip behaviors and the bond strength for the following parameters: concrete type (normal and fiber concrete) and bar diameter (10 and 13 mm). The study results showed that ordinary concrete and ECC specimens showed similar behavior for steel reinforced specimen. However, GFRP reinforced specimen showed different behavior that the steel specimen. The code analytical results showed more accuracy compared to the experimental results as expected in conservative code provisions. Based on the obtained results, it is safe to conclude that the new parameters need to be adopted to ensure safe usage of ECC for construction applications.

Tests on the Flexural and Shear Behavior of Partially Prestressed Concrete Beams(II) -About the Deflection and Crack (부분(部分) 프리스트레스트 콘크리트 부재(部材)의 휨 및 전단(剪斷) 실험(實驗)(II) -처짐과 균열에 대(對)하여)

  • Chang, Sung Pil;Kang, Won Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.41-49
    • /
    • 1989
  • Following the previous paper, the results of test are further presented. As partially prestressed concrete members permit cracks under the service state, deflection and crack control of partially prestressed concrete members is more important than that of reinforced or fully prestressed concrete members. By the test results of load-deflection relation, it can be shown that prestressing ratio significantly affects the behavior of partially prestressed concrete beams. Deflection prediction formula of some codes are tried, and test results are compared with various fomulae of crack spacing and crack width.

  • PDF