Browse > Article
http://dx.doi.org/10.1007/s40069-016-0182-3

Repair of Pre-cracked Reinforced Concrete (RC) Beams with Openings Strengthened Using FRP Sheets Under Sustained Load  

Osman, Bashir H. (College of Civil and Transportation Engineering, Hohai University)
Wu, Erjun (College of Civil and Transportation Engineering, Hohai University)
Ji, Bohai (College of Civil and Transportation Engineering, Hohai University)
Abdulhameed, Suhaib S. (College of Civil and Transportation Engineering, Hohai University)
Publication Information
International Journal of Concrete Structures and Materials / v.11, no.1, 2017 , pp. 171-183 More about this Journal
Abstract
Strengthening reinforced concrete (RC) beams with openings by using aramid fiber reinforcement polymers (AFRP) on the beams' surfaces offers a useful solution for upgrading concrete structures to carry heavy loads. This paper presents a repairing technique of the AFRP sheets that effectively strengthens RC beams, controls both the failure modes and the stress distribution around the beam chords and enhances the serviceability (deflection produced under working loads be sufficiently small and cracking be controlled) of pre-cracked RC beams with openings. To investigate the possible damage that was caused by the service load and to simulate the structure behavior in the site, a comprehensive experimental study was performed. Two unstrengthened control beams, four beams that were pre-cracked before the application of the AFRP sheets and one beam that was strengthened without pre-cracking were tested. Cracking was first induced, followed by repair using various orientations of AFRP sheets, and then the beams were tested to failure. This load was kept constant during the strengthening process. The results show that both the preexisting damage level and the FRP orientation have a significant effect on strengthening effectiveness and failure mode. All of the strengthened specimens exhibited higher capacities with capacity enhancements ranging from 21.8 to 66.4%, and the crack width reduced by 25.6-82.7% at failure load compared to the control beam. Finally, the authors present a comparison between the experimental results and the predictions using the ACI 440.2R-08 guidelines.
Keywords
pre-cracked; RC beaam; AFRP strengthening; beam with openings;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdulhameed, S. S., Wu, E., & Ji, B. (2013). Mechanical prestressing system for strengthening reinforced concrete members with prestressed carbon-fiber-reinforced polymer sheets. Journal of Performance of Constructed Facilities, 29(3), 04014081.   DOI
2 ACI-014. (2014). Building code requirements for structural concrete and commentary. Farmington Hills, MI.
3 ACI-440.2R-08. (2008). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Farmington Hills, MI.
4 Ashour, A. F., & Rishi, G. (2000). Tests of reinforced concrete continuous deep beams with web openings. Structural Journal, 97(3), 418-426.
5 Aykac, B., Kalkan, I., Aykac, S., & Egriboz, Y. E. (2013). Flexural behavior of RC beams with regular square or circular web openings. Engineering Structures, 56, 2165-2174.   DOI
6 Campione, G., & Minafo, G. (2012). Behaviour of concrete deep beams with openings and low shear span-to-depth ratio. Engineering Structures, 41, 294-306.   DOI
7 Chaallal, O., Shahawy, M., & Hassan, M. (2002). Performance of reinforced concrete T-girders strengthened in shear with carbon fiber-reinforced polymer fabric. ACI Structural Journal, 99(3), 335-343.
8 Damian, K., Thomas, M., Solomon, Y., Kasidit, C., & Tanarat, P. (2001). Finite element modeling of reinforced concrete structures strengthened with FRP laminates. Salem, OR: Report for Oregon Department of Transportation.
9 Deborah, D. C. (1994). Carbon fiber composites (1st ed.). Waltham, MA: Butterworth-Heinemann Publisher.
10 Dias, S. J., & Barros, J. A. (2008). Shear strengthening of T cross section reinforced concrete beams by near-surface mounted technique. Journal of Composites for Construction, 12(3), 300-311.   DOI
11 Dirar, S., Lees, J. M., & Morley, C. (2013). Phased nonlinear finite-element analysis of precracked RC T-beams repaired in shear with CFRP sheets. Journal of Composite for Construction, 17(4), 476-487.   DOI
12 El Maaddawy, T., & Sherif, S. (2009). FRP composites for shear strengthening of reinforced concrete deep beams with openings. Composite Structures, 89(1), 60-69.   DOI
13 El-Ashkar, N., A. Morsy, & K. Helmi, (2012). FRP repair technique for RC beams pre-damaged in shear. In Proceedings of 14th International Structural faults and repair. Edinburgh: Engineering Technics Press.
14 Etman, E. (2011). Strengthening of T-section RC beams in shear using CFRP. In Proceedings of concrete solutions. 14th international conference on concrete repair. Dresden, Germany.
15 Khalifa, A., Gold, W. J., Nanni, A., & Abdel Aziz, M. I. (1998). Contribution of externally bonded FRP to shear capactiy of RC flexural members. Journal of Composites for Construction, 2(4), 195-202.   DOI
16 Ferreira, D., Oller, E., Mari, A., & Bairan, J. (2013). Numerical analysis of shear critical RC beams strengthened in shear with FRP sheets. Journal of Composites for Construction, 17(6), 04013016.   DOI
17 Hawileh, R. A., El-Maaddawy, T. A., & Naser, M. Z. (2012). Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites. Materials and Design, 42, 378-387.   DOI
18 Hoult, N. A., & Lees, J. M. (2009). Modeling of an unbonded CFRP strap shear retrofitting system for reinforced concrete beams. Journal of composites for construction, 13(4), 292-301.   DOI
19 Hussain, Q., & Pimanmas, A. (2015). Shear strengthening of RC deep beams with openings using Sprayed Glass Fiber Reinforced Polymer Composites (SGFRP): Part 1. Experimental study. KSCE Journal of Civil Engineering, 19(7), 2121-2133.   DOI
20 Hussein, M., Afefy, H. M. E.-D., & Khalil, A.-H. A.-K. (2013). Innovative repair technique for RC beams predamaged in shear. Journal of Composite for Construction, 17(6), 04013005.   DOI
21 Kim, S., & Vecchio, F. J. (2008). Modeling of shear-critical reinforced concrete structures repaired with fiber-reinforced polymer composites. Journal of Structural Engineering, 134(8), 1288-1299.   DOI
22 Lin, X., & Zhang, Y. (2013). Bond-slip behaviour of FRPreinforced concrete beams. Construction and Building Materials, 44, 110-117.   DOI
23 Richardson, T., & Fam, A. (2014). Modulus effect of bonded CFRP laminates used for repairing preyield and postyield cracked concrete beams. Journal of Composite for Construction, 18(4), 04013054.   DOI
24 Mansur, M. (1998). Effect of openings on the behaviour and strength of R/C beams in shear. Cement & Concrete Composites, 20(6), 477-486.   DOI
25 Mansur, M.A. (2006). Design of Reinforced Concrete Beams with Web Openings. In Proceedings of the 6th ASI-pacific Structural Engineering and Construction Conference (APSEC 2006). 5-6 September 2006, Kuala Lumpur, Malaysia.
26 Mansur, M., & Alwis, W. (1984). Reinforced fibre concrete deep beams with web openings. International Journal of Cement Composites and Lightweight Concrete, 6(4), 263-271.   DOI
27 Mansur, M., Tan, K.-H., & Wei, W. (1999). Effects of creating an opening in existing beams. Structural Journal, 96(6), 899-905.
28 Osman, B. H., Wu, E., Ji, B., & Abdulhameed, S. S. (2016). Shear behavior of reinforced concrete (RC) beams with circular web openings without additional shear reinforcement. KSCE Journal of Civil Engineering. doi: 10.1007/s12205-016-0387-7.   DOI
29 Shanmugam, N. E., & Swaddiwudhipong, S. (1988). Strength of fibre reinforced concrete deep beams containing openings. International Journal of Cement Composites and Lightweight Concrete, 10(1), 53-60.   DOI
30 Singh, S. B. (2013). Shear response and design of RC beams strengthened using CFRP laminates. International Journal of Advanced Structural Engineering (IJASE), 5(1), 1-16.   DOI
31 Torunbalci, N. (2002). Behaviour and design of large rectangular openings in reinforced concrete beams. Architectural Science Review, 45(2), 91-96.   DOI
32 Vecchio, F. J., & Bucci, F. (1999). Analysis of repaired reinforced concrete structures. Journal of Structural Engineering, 125(6), 644-652.   DOI
33 Yang, K.-H., Eun, H.-C., & Chung, H.-S. (2006). The influence of web openings on the structural behavior of reinforced high-strength concrete deep beams. Engineering Structures, 28(13), 1825-1834.   DOI
34 Zhou, Y.-W., Wu, Y.-F., & Yun, Y. (2010). Analytical modeling of the bond-slip relationship at FRP-concrete interfaces for adhesively-bonded joints. Composites Part B Engineering, 41(6), 423-433.   DOI
35 Zhang, Z., Hsu, C.-T. T., & Moren, J. (2004). Shear strengthening of reinforced concrete deep beams using carbon fiber reinforced polymer laminates. Journal of Composites for Construction, 8(5), 403-414.   DOI