• Title/Summary/Keyword: service engineering

Search Result 12,164, Processing Time 0.039 seconds

A Study on Transfer Convenience Evaluation Indicators for Urban Railway Stations (도시철도 역사의 환승 편의성 평가지표 연구)

  • Kim, Hwang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.793-799
    • /
    • 2023
  • This study classifies the types of urban railway stations that reflect the location characteristics of urban railway stations, the structure and form of station taxes, and the number of users, and the level of inconvenience in the transfer movement line for users by station type, the number and connectivity of transfer information, and the level of transfer convenience facilities. The number of installations, conflicts between users, and transfer information signs were analyzed. As a result of data analysis, it was found that the factors that cause the most inconvenience to urban rail users when transferring are the length and curvature of the transfer line, pedestrian density and number of passengers in the transfer passage, presence or absence of transportation convenience facilities, and the size and height of transfer information letters. These transfer inconveniences were objectified, quantified, and presented as evaluation indicators that can measure the transfer convenience of urban railway stations. Additionally, an evaluation scale was developed to measure the service level for each evaluation indicator. The evaluation scale for each indicator presented six levels by applying linear interpolation based on the maximum and minimum values of data derived through field surveys. However, it is judged that a comprehensive evaluation of transfer convenience that combines the importance and weight of each convenience evaluation indicator should be established through future research.

Creation of Crack BIM in Bridge Deck and Development of BIM-FEM Interoperability Algorithm (교량 바닥판의 균열 BIM 생성 및 BIM-FEM 상호 연계 알고리즘 개발)

  • Yang, Dahyeon;Lee, Min-Jin;An, Hyojoon;Jung, Hyun-Jin;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.689-693
    • /
    • 2023
  • Domestic bridges with a service life of more than 30 years are expected to account for approximately 54% of all bridges within the next 10 years. As bridges rapidly deteriorate, it is necessary to establish an appropriate maintenance plan. Recent domestic and international research have focused on the integration of BIM to digitize bridge maintenance information and then enhance accessibility and usability of the information. Accordingly, this study developed a BIM-FEM interoperability algorithm for bridge decks to convert maintenance information into data and efficiently manage the history of maintenance. After creating an initial crack BIM based on an exterior damage map, bridge specification and damage information were linked to a numerical analysis that performs damage analysis considering damage scenarios and design loads. The spread of cracks obtained from the analysis results were updated into the BIM. Based on the damage spread information on the BIM, an automated technology was also developed to assess both the current and future condition ratings of the bridge deck. This approach can enable an efficient maintenance of the deck using the history data from bridge inspection and diagnosis as well as future information on cracks and defects. The expected early detection and prevention would ultimately improve the lifespan and safety of bridges.

The Development of a Energy Monitoring System based on Data Collected from Food Factories (식품공장 수집 데이터 기반 에너지 모니터링 시스템 개발)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1001-1006
    • /
    • 2023
  • Globally, rising energy costs and increased energy demand are important issues for the food processing and manufacturing industries, which consume significant amounts of energy throughout the supply chain. Accordingly, there is a need for the development of a real-time energy monitoring and analysis system that can optimize energy use. In this study, a food factory energy monitoring system was proposed based on IoT installed in a food factory, including monitoring of each facility, energy supply and usage monitoring for the heat treatment process, and search functions. The system is based on the IoT sensor of the food processing plant and consists of PLC, database server, OPC-UA server, UI server, API server, and CIMON's HMI. The proposed system builds big data for food factories and provides facility-specific monitoring through collection functions, as well as energy supply and usage monitoring and search service functions for the heat treatment process. This data collection-based energy monitoring system will serve as a guide for the development of a small and medium-sized factory energy monitoring and management system for energy savings. In the future, this system can be used to identify and analyze energy usage to create quantitative energy saving measures that optimize process work.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

Automated Story Generation with Image Captions and Recursiva Calls (이미지 캡션 및 재귀호출을 통한 스토리 생성 방법)

  • Isle Jeon;Dongha Jo;Mikyeong Moon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2023
  • The development of technology has achieved digital innovation throughout the media industry, including production techniques and editing technologies, and has brought diversity in the form of consumer viewing through the OTT service and streaming era. The convergence of big data and deep learning networks automatically generated text in format such as news articles, novels, and scripts, but there were insufficient studies that reflected the author's intention and generated story with contextually smooth. In this paper, we describe the flow of pictures in the storyboard with image caption generation techniques, and the automatic generation of story-tailored scenarios through language models. Image caption using CNN and Attention Mechanism, we generate sentences describing pictures on the storyboard, and input the generated sentences into the artificial intelligence natural language processing model KoGPT-2 in order to automatically generate scenarios that meet the planning intention. Through this paper, the author's intention and story customized scenarios are created in large quantities to alleviate the pain of content creation, and artificial intelligence participates in the overall process of digital content production to activate media intelligence.

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

Research on Bridge Maintenance Methods Using BIM Model and Augmented Reality (BIM 모델과 증강현실을 활용한 교량 유지관리방안 연구)

  • Choi, Woonggyu;Pa Pa Win Aung;Sanyukta Arvikar;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Bridges, which are construction structures, have increased from 584 to 38,405 since the 1970s. However, as the number of bridges increases, the number of bridges with a service life of more than 30 years increases to 21,737 (71%) by 2030, resulting in fatal accidents due to basic human resource maintenance of facilities. Accordingly, the importance of bridge safety inspection and maintenance measures is increasing, and the need for decision-making support for supervisors who manage multiple bridges is also required. Currently, the safety inspection and maintenance method of bridges is to write down damage, condition, location, and specifications on the exterior survey map by hand or to record them by taking pictures with a camera. However, errors in notation of damage or defects or mistakes by supervisors are possible, typos, etc. may reduce the reliability of the overall safety inspection and diagnosis. To improve this, this study visualizes damage data recorded in the BIM model in an AR environment and proposes a maintenance plan for bridges with a small number of people through maintenance decision-making support for supervisors.

Automation of Sampling for Public Survey Performance Assessment (공공측량 성과심사 표본추출 자동화 가능성 분석)

  • Choi, Hyun;Jin, Cheol;Lee, Jung Il;Kim, Gi Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.95-100
    • /
    • 2024
  • The public survey performance review conducted by the Spatial Information Quality Management Institute is conducted at the screening rate in accordance with the regulations, and the examiner directly judges the overall trend of the submitted performance based on the extracted sample. However, the evaluation of the Ministry of Land, Infrastructure and Transport, the evaluation trustee shall be specified by random extraction (Random Collection) is specified by the sample. In this study, it analyzed the details of the actual site and analyzed through securing actual performance review data. In addition, we analyzed considerations according to various field conditions and studied ways to apply the public survey performance review sampling algorithm. Therefore, detailed sampling criteria analysis by performance reviewers is necessary. A relative comparison was made feasible by comparing the data for which the real performance evaluation was performed with the outcomes of the Python automation program. This automation program is expected to be employed as a foundation program for the automated application of public survey performance evaluation sampling in the future.

A Study on the Extraction of Psychological Distance Embedded in Company's SNS Messages Using Machine Learning (머신 러닝을 활용한 회사 SNS 메시지에 내포된 심리적 거리 추출 연구)

  • Seongwon Lee;Jin Hyuk Kim
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • The social network service (SNS) is one of the important marketing channels, so many companies actively exploit SNSs by posting SNS messages with appropriate content and style for their customers. In this paper, we focused on the psychological distances embedded in the SNS messages and developed a method to measure the psychological distance in SNS message by mixing a traditional content analysis, natural language processing (NLP), and machine learning. Through a traditional content analysis by human coding, the psychological distance was extracted from the SNS message, and these coding results were used for input data for NLP and machine learning. With NLP, word embedding was executed and Bag of Word was created. The Support Vector Machine, one of machine learning techniques was performed to train and test the psychological distance in SNS message. As a result, sensitivity and precision of SVM prediction were significantly low because of the extreme skewness of dataset. We improved the performance of SVM by balancing the ratio of data by upsampling technique and using data coded with the same value in first content analysis. All performance index was more than 70%, which showed that psychological distance can be measured well.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.