• Title/Summary/Keyword: serine protease activity

Search Result 191, Processing Time 0.025 seconds

The Effect of Quality Improvement for Wool and Silk Treated with Protease Produced by B. subtilis K-54 (Bacillus subtilis K-54의 단백질 분해효소 처리에 의한 양모와 견의 품질개선효과)

  • Kang, Sang-Mo;Cha, Min-Kyung;Kim, Soo-Jin;Kwon, Yoon-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.2
    • /
    • pp.239-244
    • /
    • 2006
  • For studies of fibrinolytic enzyme strain K-54 was isolated from the Korean traditional food chungkook-jang. Isolated strains K-54 was identified as Bacillus subtilis. The molecular weight of fibrinolytic enzyme from B. subtilis K-54 was 27 kDa. Optimum temperature for fibrinolytic enzyme of B. subtilis K-54 was $50-70^{\circ}C$ and optimum pH for producing the enzyme of this strain was ranging from 8 to 12. Also, it was found out enzyme activity was completely inhibited by 1mM PMSF. The result indicated this enzyme was thermo-stable alkaline serine protease with strong fibrinolytic activity. The wool and silk were treated with protease of B. subtilis K-54. As a result, the property of dyeing of wool fabrics was increased. By the increasing of treatment time became smoothened. But the change of mechanical properties were not changed.

Purification and Some Properties of an Intracellular Protease from Pseudomonas Carboxydovorans (Pseudomonas carboxydovorans의 세포내 단백질 가수분해 효소의 정제 및 특징)

  • 이준행;김영민
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 1989
  • A soluble intracellular protease from cells of Pseudomonas carboxydovorans, a carboxydobacterium, grown on nutrient broth was purified 68-fold in five steps to better than 95% homogeneity with a yield of 2.4% using azocasein as a substrate. The enzyme activity was not detected from cells grown on pyruvate, succinate, acetate, or CO as a sole source of carbon and energy. The molecular weight of the native enzyme was determined to be 53,000. Sodium dodecyl sulfate-gel electrophoresis revealed the purified enzyme a monomer. The enzyme was found to be a serine-type protease. The enzyme activity was inhibited completely by several divalent cations such as $Cd^{2+}, Cu^{2+}, Hg^{2+}$, and $Fe^{2+}$. The enzyme was also inhibited by EGTA, but was stimulated by iodoacetamide. The optimal pH and temperature for the enzyme reaction were found to be 8.0 and $50^{\circ}C$, respectively. The enzyme was inactive on CO dehydrogenase.

  • PDF

Purification and Biochemical Characteristics of a 45 kDa Fibrinolytic Enzyme from a Halophile (호염성균 유래 45 kDa 혈전용해효소의 순수분리와 생화학적 특성)

  • Kim, Do-Hyoung;Park, Jeong-Uck;Seo, Min-Jeong;Kim, Min-Jeong;Lee, Hye-Hyeon;Choi, Yung-Hyun;Joo, Woo-Hong;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • A fibrinolytic enzyme producing Bacillus sp. J-19 was isolated from the popular Korean seasoning, pickled anchovy. The fibrinolytic enzyme was purified to homogeneity by chromatographic methods including ethanol precipitation and gel-filtration using Sephadex G-50. Compared to the crude enzyme extract, the specific activity of the enzyme increased 1021-fold with a recovery of 23%. The purified enzyme was estimated to be approximately 45 kDa by SDS-PAGE. Especially, the amidolytic activity in the presence of the synthetic substrate for serine protease (H-D-Ile-Pro-Arg-pNA, S-2288) represented approximately 17 U/mg. In addition, more than the 60% activity of the 45 kDa fibrinolytic activity was maintained in the presence of up to 30% (w/v) sodium chloride. These findings could provide a unique fibrinolytic enzyme, leading to a potential thrombolytic agent.

Screening for Cold-Active Protease-Producing Bacteria from the Culture Collection of Polar Microorganisms and Characterization of Proteolytic Activities (남북극 유래 저온성 박테리아 Culture Collection에서 저온활성 프로테아제 생산균주의 스크리닝과 효소 특성)

  • Kim, Doc-Kyu;Park, Ha-Ju;Lee, Yung-Mi;Hong, Soon-Gyu;Lee, Hong-Kum;Yim, Joung-Han
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • The Korea Polar Research Institute (KOPRI) has assembled a culture collection of cold-adapted bacterial strains from both the Arctic and Antarctic. To identify excellent protease-producers among the proteolytic bacterial collection (874 strains), 78 strains were selected in advance according to their relative activities and were subsequently re-examined for their extracellular protease activity on $0.1{\times}$ ZoBell plates supplemented with 1% skim milk at various temperatures. This rapid and direct screening method permitted the selection of a small group of 15 cold-adapted bacterial strains, belonging to either the genus Pseudoalteromonas (13 strains) or Flavobacterium (2 strains), that showed proteolytic activities at temperatures ranging between $5-15^{\circ}C$. The cold-active proteases from these strains were classified into four categories (serine protease, aspartic protease, cysteine protease, and metalloprotease) according to the extent of enzymatic inhibition by a class-specific protease inhibitor. Since highly active and/or cold-adapted proteases have the potential for industrial or commercial enzyme development, the protease-producing bacteria selected in this work will be studied as a valuable natural source of new proteases. Our results also highlight the relevance of the Antarctic for the isolation of protease-producing bacteria active at low temperatures.

돼지에 있어서 난포액이 돼지 난자의 체외성숙과 Plasminogen Activity에 미치는 영향

  • 안지영;정희태;양부근;김정익;최선호;박춘근
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.251-251
    • /
    • 2004
  • Plasminogen activators (PA)는 다수의 세포 형태에서 분비되는 것으로 알려진 serine protease이다. PA는 섬유소 용해, 배란, 유선 퇴화, 착상 및 수정 등 다양한 생리적인 과정에 관여한다. 본 연구는 난포액이 돼지 난자의 체외성숙에 미치는 영향을 검토하기 위하여, 다양한 조건하에서의 돼지 난자의 성숙과 난구세포-난자 복합체(Cumulus-Oocyte complexes: COCs) 또는 conditioned medium 내의 PA 활성을 검토하였다. 직경 2∼6m 난포로부터 COCs를 회수하여 일부는 난구세포를 제거하였다. (중략)

  • PDF

Effects of Glucose on Insulin-like Growth Factor Binding-5 Expression in Human Fibroblasts. (사람의 섬유아세포에서 Glucose 농도가 Insulin-like Growth Factor Binding Protein-5의 발현에 미치는 영향)

  • Ryu, Hye-Young;Hwang, Hye-Jung;Kim, In-Hye;Ryu, Hong-Soo;Nam, Taek-Jeong
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1224-1231
    • /
    • 2007
  • Insulin-like growth factor-I (IGF-I) and IGF-II have structure like insulin. In contrast to insulin, however, the bioavaility of IGFs is modulated by the IGF-binding protein (IGFBPs). Each of IGFBPs was different with molecular masses, biological characteristics, and immunological properties.. Human fibroblasts secrete IGFBPs that can modify IGF-I action. In diabetes mellitus, the most study of IGF systems have been investigated in insulin-dependent diabetes mellitus, non-insulin-dependent diabetes mellitus, and streptozotocin-in-duced animals in vivo. Recently, a little research regarding the IGFs system has been proposed in por-tion of cell in vitro. In this study, effects of low or high glucose condition on IGFBP-5 in GM10 was investigated. By western blotting analysis, IGFBP-5 level decreased in cells cultured at high glucose, but IGFBP-5 level of mRNA didn't change. IGFBP-5 protease that cleaves IGFBP-5 in conditioned me-dium had was inhibited by EDTA and heparin, like serine protease and metalloprotease. Furthermore, the protease activity was increased in high glucose cultivated condition. In results of gelatin zymog-raphy, molecular weight of proteolytic metalloenzymes was indentified 69-kDa and protease activity was increased in time-dependent manner. Although the mechanism has yet to be determined, IGFBP-5 proteolysis in GM10 cells cultured with high glucose may increase effects of IGFs to decrease the glu-cose level through dissociation of IGFs from IGFBPs. Therefore, we suggest that IGF- I and IGFBPs could be potential models in study of pathophysiology such as diabetes mellitus.

Identification of the sprU Gene Encoding an Additional sprT Homologous Trypsin-Type Protease in Streptomyces griseus

  • YANG HYE-YOUNG;CHOI SI-SUN;CHI WON-JAE;KIM JONG-HEE;KANG DAE-KYUNG;CHUN JAESUN;KANG SANG-SOON;HONG SOON-KWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1125-1129
    • /
    • 2005
  • Cloning of a 6.6-kb BamHI digested chromosomal DNA from S. griseus IFO13350 revealed the presence of an additional gene encoding a novel trypsin-like enzyme, named SprU. The SprU protein shows a high homology ($79\%$ identity, $88\%$ similarity) with the SGT protease, which has been reported as a bacterial trypsin in the same strain. The amino acid sequence deduced from the nucleotide sequence of the sprU gene suggests that SprU is produced as a precursor consisting of an amino-terminal presequence (29 amino acid residues), prosequence (4 residues), and mature trypsin consisting of 222 amino acids with a molecular weight of 22.94 kDa and a calculated pI of 4.13. The serine, histidine, and aspartic acid residues composing the catalytic triad of typical serine proteases are also well conserved. When the trypsin activity of the SprU was spectrophotometrically measured by the enzymatic hydrolysis of the artificial chromogenic substrate, N-${alpha}$-benzoyl-DL-arginine-p-nitroanilide, the S. lividans transformant with pWHM3-U gave 3 times higher activity than that of control. When the same recombinant plasmid was introduced into S. griseus, however, the gene dosage effect was not so significant, as in the cases of other genes encoding serine proteases, such as sprA, sprB, and sprD. Although two trypsins, SprU and SGT, have a high degree of homology, the pI values, the gene dosage effect in S. griseus, and the gene arrangement adjacent to the two genes are very different, suggesting that the biochemical and biological function of the SprU might be quite different from that of the SGT.

Biochemical Characterization of Serine Proteases with Fibrinolytic Activity from Tenodera sinensis (Praying Mantis)

  • Kim, Yeong-Shik;Hahn, Bum-Soo;Cho, So-Yean;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.97-104
    • /
    • 2001
  • Three types of proteases (MEF-1, MEF-2 and MEF-3) were purified from the egg cases of Ten-odera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The proteases were assessed homogeneous by SDS-polyacrylamide gel electrophoresis and have molecular weight of 31,500, 32,900 and 35,600 Da, respectively. The N-terminal regions of the primary structure were compared and they were found to be different each other. MEFs readily digested the $A\alpha$ - and B$\beta$-chains of fibrinogen and more slowly the ${\gamma}$-chain. The action of the enzymes resulted in extensive hydrolysis of fibrinogen and fibrin, releasing a variety of fibrinopeptides. MEF-1 was inactivated by Cu$^{2+}$ and Zn$^{2+}$ and inhibited by PMSF and chymostatin. MEF-2 was inhibited by PMSF, TLCK. soybean trypsin inhibitor. MEF-3 was only inhibited by PMSF and chymostatin. Antiplasmin was not sensitive to MEF-1 but antithrombin III inhibited the enzymatic activity qf MEF-1. MEF-2 specifically bound to anti plasmin Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEFs was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 3$0^{\circ}C$. MEF-1 preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. In contrast, MEF-2 specifically cleaved the peptide bond between Arg23 and Gly24. D-dimer concentrations increased on incubation of cross-linked fibrin with MEF-1, indicating the enzyme has a strong fibrinolytic activity.ity.

  • PDF

Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1 (Chryseobacterium sp. JK1이 분비하는 세포외 단백질분해효소 특성)

  • Lee, Yu-Kyong;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.78-82
    • /
    • 2013
  • A novel Chryseobacterium sp. JK1 strain isolated from soil had been reported that this isolate produced large amount of extracellular protease at mesophilic temperature in previous study. The optimal temperature and pH of extracellular protease were $40^{\circ}C$ and 7.0, respectively, showing narrow range of optimal temperature and relatively broad activity from pH 6.0 to 9.0. In addition, the protease showed greatest activity against skim milk and lowest against bovine serum albumin (BSA). The protease strongly inhibited by ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA) or phenylmethylsulfonyl fluoride (PMSF), and addition of cation $Ag^+$ or $Cu^{2+}$, and slightly inhibited by $Al^{3+}$. No significant inhibition was found with pepstatin, and addition of cation, $K^+$, $Ca^{2+}$, $Na^+$, $Fe^{2+}$ or $Mg^{2+}$. On the contrary, protease was enhanced by addition of divalent cation $Mn^{2+}$ (5 mM). Zymography analysis of concentrated culture supernatant revealed two major bands at 67 and 145 kDa. These results suggest that Chryseobacterium sp. JK1 strain produced extracellular neutral serine proteases which could apply in food industry.

Characteristics and Action Pattern of Pretense from Bacillus subtilis CCKS-111 in Korean Traditional Soy Sauce (한국재래간장으로 부터 분리한 Bacillus subtilis CCKS-111이 생성하는 Protease의 특성 및 작용양상)

  • Choi, Cheong;Choi, Kwang-Soo;Cho, Young-Je;Lim, Sung-il;Kim, Sung;Son, Jun-Ho;Lee, Hee-Duck;Kim, Young-Hwal
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.915-921
    • /
    • 1996
  • An alkaline pretense Producing microorganism was isolated from Korean traditional soy sauce and identified as Bacillus subtilis CCKS-111. The optimum culture condition of Bacillus subtilis CCKS-111 for the production of alkaline pretense was as follow: 2% soluble starch, 0.2% peptone, 0.1% (NB$_4$)$_2$S$_2$O$_{8}$ , 0.2% MgSO$_4$, pH 7.0, 35$^{\circ}C$ and 24hrs. The optimum pH and temperature for the enzyme activity of alkaline pretense producing Bacillus subtilis CCKS-111 were pH 9.0 and 5$0^{\circ}C$, respectively. The enzyme was relatively stable at pH 6.0~11.0 and at temperature below 4$0^{\circ}C$. The activity of the enzyme was inhibited by $K^{+}$ and Hg$^{2+}$, whereas Cu$^{2+}$ exhibited rather activating effects on the enzyme activity. Ethylenediaminetetraacetic acid and phenylmethanesulfonyl fluoride inhibited the enzyme activity. This indicates that this is serine pretense which requires metal ion group for the enzyme activity. Km value was 2.313$\times$10$^{-4}$ M/L, V$_{max}$ value was 39.216$\mu\textrm{g}$/min. This enzyme hydrolyzed casein more rapidly than the hemoglobin.lobin.

  • PDF