남북극 유래 저온성 박테리아 Culture Collection에서 저온활성 프로테아제 생산균주의 스크리닝과 효소 특성

Screening for Cold-Active Protease-Producing Bacteria from the Culture Collection of Polar Microorganisms and Characterization of Proteolytic Activities

  • 김덕규 (한국해양연구원 부설 극지연구소 극지바이오센터) ;
  • 박하주 (한국해양연구원 부설 극지연구소 극지바이오센터) ;
  • 이영미 (한국해양연구원 부설 극지연구소 극지바이오센터) ;
  • 홍순규 (한국해양연구원 부설 극지연구소 극지바이오센터) ;
  • 이홍금 (한국해양연구원 부설 극지연구소 극지바이오센터) ;
  • 임정한 (한국해양연구원 부설 극지연구소 극지바이오센터)
  • 투고 : 2010.02.25
  • 심사 : 2010.03.09
  • 발행 : 2010.03.31

초록

극지연구소(KOPRI)는 국내외적으로 유일하게 남북극 지역에서 분리한 저온적응성 박테리아 균주를 대상으로 culture collection(약 6,300균주)을 구축하여 운영하고 있다. 보유 중인 프로테아제(protease) 생산 균주들(총 874균주) 중에서 활성이 높은 프로테아제를 생산하는 78개의 균주들을 1차 선발한 후, 1% skim milk가 포함된 0.1${\times}$ ZoBell 고체배지에 접종하고 다양한 온도($5-30^{\circ}C$)에서 배양하면서 세포외분비성 프로테아제의 활성을 비교하였다. 위의 신속하고 직접적인 균주 스크리닝 방법을 통해서, 최종적으로 저온활성 프로테아제를 생산하는 15개의 저온적응성 균주들을 선발하였다. 최종 선발된 균주들은 16S rRNA 유전자의 분석결과 Pseudoalteromonas (13균주)와 Flavobacterium (2균주) 속(genus)으로 분류되었고, $5-15^{\circ}C$ 저온에서도 활성을 나타내는 저온성 프로테아제를 생산하였다. 15개 균주들이 생산하는 각각의 프로테아제는 특이적 화합물에 의한 효소활성 억제 정도에 따라 5개의 그룹(serine protease, aspartic protease, cysteine protease, metalloprotease, 그리고 미분류 프로테아제)으로 분류되었다. 본 실험을 통해서 선발한 남북극 유래 박테리아 균주들은 새로운 저온활성 프로테아제를 발굴하기 위한 유용한 생물자원으로서의 가치를 가지고 있다.

The Korea Polar Research Institute (KOPRI) has assembled a culture collection of cold-adapted bacterial strains from both the Arctic and Antarctic. To identify excellent protease-producers among the proteolytic bacterial collection (874 strains), 78 strains were selected in advance according to their relative activities and were subsequently re-examined for their extracellular protease activity on $0.1{\times}$ ZoBell plates supplemented with 1% skim milk at various temperatures. This rapid and direct screening method permitted the selection of a small group of 15 cold-adapted bacterial strains, belonging to either the genus Pseudoalteromonas (13 strains) or Flavobacterium (2 strains), that showed proteolytic activities at temperatures ranging between $5-15^{\circ}C$. The cold-active proteases from these strains were classified into four categories (serine protease, aspartic protease, cysteine protease, and metalloprotease) according to the extent of enzymatic inhibition by a class-specific protease inhibitor. Since highly active and/or cold-adapted proteases have the potential for industrial or commercial enzyme development, the protease-producing bacteria selected in this work will be studied as a valuable natural source of new proteases. Our results also highlight the relevance of the Antarctic for the isolation of protease-producing bacteria active at low temperatures.

키워드

참고문헌

  1. Alam, S.I., S. Dube, G.S.N. Reddy, B.K. Bhattacharya, S. Shivaji, and L. Singh. 2005. Purification and characterisation of extracellular protease produced by Clostridium sp. from Schirmacher oasis, Antarctica. Enzyme Microb. Technol. 36, 824-831. https://doi.org/10.1016/j.enzmictec.2005.01.011
  2. Antranikian, G. and K. Egorova. 2007. Extremophiles, a unique resource of biocatalysts for industrial biotechnology, pp. 361-406. In C. Gerday and N. Glansdorff (eds.), Physiology and biochemistry of extremophiles. ASM Press, Washington, D.C., USA.
  3. Cavicchioli, R. 2006. Cold-adapted archaea. Nat. Rev. Microbiol. 4, 331-343. https://doi.org/10.1038/nrmicro1390
  4. Cavicchioli, R., K.S. Siddiqui, D. Andrews, and K.R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13, 253-261. https://doi.org/10.1016/S0958-1669(02)00317-8
  5. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  6. Dastager, S.G., A. Dayanand, W.J. Li, C.J. Kim, J.C. Lee, D.J. Park, X.P. Tian, and Q.S. Raziuddin. 2008. Proteolytic activity from an alkali-thermotolerant Streptomyces gulbargensis sp. nov. Curr. Microbiol. 57, 638-642. https://doi.org/10.1007/s00284-008-9257-y
  7. Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D'Amico, and et al. 2000. Cold- adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
  8. Huston, A.L. 2008. Biotechnological aspects of cold-adapted enzymes, pp. 347-363. In R. Margesin (ed.), Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin, Heidelberg, Germany.
  9. Ivanova, E.P., E.A. Kiprianova, V.V. Mikhailov, G.F. Levanova, A.D. Garagulya, N.M. Gorshkova, M.V. Vysotskii, and et al. 1998. Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int. J. Syst. Bacteriol. 48, 247-256. https://doi.org/10.1099/00207713-48-1-247
  10. Karbalaei-Heidari, H.R., A.A. Ziaee, and M.A. Amoozegar. 2007. Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles 11, 237-243. https://doi.org/10.1007/s00792-006-0031-4
  11. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  12. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrant and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd., London, UK.
  13. Nichols, D., J. Bowman, K. Sanderson, C.M. Nichols, T. Lewis, T. McMeekin, and P.D. Nichols. 1999. Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr. Opin. Biotechnol. 10, 240-246. https://doi.org/10.1016/S0958-1669(99)80042-1
  14. Overall, C.M. and C.P. Blobel. 2007. In search of partners: linking extracellular proteases to substrates. Nat. Rev. Mol. Cell Biol. 8, 245-257.
  15. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635.
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  17. Shin, H.H. and H.S. Choi. 1998. Purification and characterization of cysteine protease from Pleurotus ostreatus. Biosci. Biotechnol. Biochem. 62, 1416-1418. https://doi.org/10.1271/bbb.62.1416
  18. Vazquez, S., L. Ruberto, and W. Mac Cormack. 2005. Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. Polar Biol. 28, 319-325. https://doi.org/10.1007/s00300-004-0673-6
  19. Vazquez, S.C., E. Hernandez, and W.P. Mac Cormack. 2008. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96-47 strain. Rev. Argent. Microbiol. 40, 63-71.
  20. Wang, Q.F., J.L. Miao, Y.H. Hou, Y. Ding, G.D. Wang, and G.Y. Li. 2005. Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol. Lett. 27, 1195-1198. https://doi.org/10.1007/s10529-005-0016-x