• 제목/요약/키워드: serine acetyltransferase

검색결과 6건 처리시간 0.021초

Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix

  • You, Eunae;Jeong, Jangho;Lee, Jieun;Keum, Seula;Hwang, Ye Eun;Choi, Jee-Hye;Rhee, Sangmyung
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.192-197
    • /
    • 2022
  • Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.

Altered Sulfate Metabolism of Arabidopsis Caused by Beet Severe Curly Top Virus Infection

  • Lee, Hong-Gun;Park, Sung-Hee;Kim, Dong-Giun;Lee, Taek-Kyun;Yum, Seung-Shic;Auh, Chung-Kyoon;Lee, Suk-Chan
    • The Plant Pathology Journal
    • /
    • 제21권4호
    • /
    • pp.355-360
    • /
    • 2005
  • Sulfur, an important component of plants, is regulated by a variety of stresses in sulfate assimilation and metabolism. Increase has been observed in the expression of O-acetylserine(thiol)lyase (OASTL) through two-dimensional electrophoresis with the shoot tips of Arabidopsis infected by beet severe curly top geminivirus (BSCTV). With the three- to six-fold increases in the transcript expression of OASTL, serine acetyltransferase (SAT) and $\gamma$-glutmylcysteine synthetase (GSH) were induced over the mock-inoculated organization in each organization through real-time RT-PCR analysis. The expression of those genes might affect the accumulation of anthocyanin in symptomatic tissues and the induction of abnormal callus-like structures formed by additional cell divisions as typical disease symptoms of BSCTV-infected Arabidopsis. This is the first report to describe the collaborative induction of OASTL, SAT, and GSH in virus-infected plants. The changed expressions of OASTL, SAT, and GSH in Arabidopsis infected with BSCTV raises new aspects regarding the biological function of symptomatic tissues related to sulfate metabolism.

사람의 O-linked N-acetyl-$\beta$-D-glucosaminidase 유전자의 분석과 재조합 발현 (Analysis of Human O-GlcNAcase Gene and the Expression of the Recombinant Gene.)

  • 강대욱;서현효
    • 미생물학회지
    • /
    • 제40권2호
    • /
    • pp.87-93
    • /
    • 2004
  • 세포질과 핵단백질의 serine과 threonine 잔기에 O-linked N-acetyl-$\beta$-glucosamine (O-GlcNAc)의 첨가는고등 진핵 세포에서 흔히 일어나는 번역 후 단백질의 변형 중 하나로서 단백질의 인산화와 유사한 세포 내 신호전달에 관여하는 것으로 보인다. O-GlcNAc의 첨가와 제거는 O-GlcNAc transferase (OGT)와 O-linked N-acetyl-$\beta$-D-glucos-aminidase (O-GlcNAcase) 효소에 의해 각각 촉매된다. 두가지 종류의 사람 유래 O-GlcNAcase 유전자(O-GlcNAcase, v-O-GlcNAcase)를cloning하고 세 가지의 융합단백질로 대장균에서 생산을 시도하였다. O-GlcNAcase의 기질 유사체 인 ${\rho}$-nitrophenyl-N-acetyl-$\beta$-D-g1ucosaminide (${\rho}$NP-$\beta$-D-GlcNAc)를 기질로 사용하여 효소활성을 측정 한 결과 v-O-GlcNAcase는 활성을 나타내지 않았다. 여러 종류의 amino sugar 기질 유사체를 사용하여 O-GlcNAcase의 활성을 측정하였으나 오직 ${\rho}$NP-$\beta$-D-GlcNAc만이 활성을 보였다. Blast검색으로 분석한 결과 아미노 말단의 hyaluronidase-like domain (hyaluronidase-유사 영역)과 카르복시 말단의 N-acetyltransferase 영역 두 곳의 conserved domains 존재하였다. 효소촉매에 중요한 영역을 밝히기 위해 여러 deletion mutants(결손 변이체)를 제작한 후 효소활성을 측정하고 Western blot으로 분석하였다. Hyaluronidas-유사 영역, 유전자 내부와 N-acetyltransferase 영역을 제거할 경우 효소활성이 사라졌으나 아미노 말단의 55개 아미노산과 카르복시 말단의 truncation은 활성을 일부분 유지하였다. 위의 사실에 기초하여 hyaluronidas-유사 영역은 효소활성에 중요하고 카르복시 말단의 N-acetyltransferase 영역은 조절기능으로 작용하는 것으로 추정된다.

Pyruvate Dehydrogenase Phosphatase의 Catalytic Subunit의 분리정제 및 결정화 (Purification and Crystallization of the Recombinant Catalytic Subunit of Pyruvate Dehydrogenase Phosphatase)

  • 김영미
    • 한국식품위생안전성학회지
    • /
    • 제18권3호
    • /
    • pp.146-152
    • /
    • 2003
  • 당 대사에 관여하는 Pyruvate dehydrogenase phosphatase (PDP)는 해당과정에서의 대사 산물인 pyruvate 를 acetyl CoA로 만들어 구연산 회로로 진입시켜주는 효소인 Pyruvate dehydrogenase complex(PDP)의 활성을 조절하는 중요한 효소이다. PDP의 catalytic subunit는 PDP의 dihydrolipoamide acetyltransferase(E2), PDP regulatory subunit (PDPr), 그리고 칼슘 결합 도메인 등으로 구성되어 있는 것으로 추측되어지고 있다. 본 연구에서는 PDP 단백질을 분리정제하고 결정화 하고자하였다. PDP는 catalytic subunit(PDPc, Mr 52,600 Da)과, regulatory subunit (PDPr, 95,600 Da)으로 구성되어 있으며 칼슘 존재하에 PDPc는 dihydrolipoamide acetyltransferase(E2) component와 결합하여 기질인 인산 E1 component의 탈인산화율을 증가시킨다. PDPc는 intrinsic 칼슘 결합부위를 가지며 두 번째 칼슘 부위는 E2 존재 하에 형성된다. 이러한 특이한 상호반응을 이용한 GSH-Sepharose-GST-L2 matrix를 이용하여 약 1000 U/mg의 specific activity를 갖는 순수 PDPc를 약 80%의 yield로 얻어 결정화에 사용하였다.

Expression, Purification and Functional and structural relationship of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.236-236
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase componant of the pyruvate dehydrogenase complex (PDC). PDP consists of a Mg$\^$+2/ -dependent and Ca$\^$+2)-stimulated catalytic subunit (PDPc) of Mr 52,600 and a FAD-containing regulatory subunit (PDPr) of Mr 95.600. Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major functional domains such as dihydrolipoamide acetyltransferase(E$_2$)-binding domain, regulatory subunit of PDP(PDPr)-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase (rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPm binds to the inner lipoyl domain (L$_2$) of E$_2$ of pyruvate dehydrogenase complex (PDC) in the presence of Ca$\^$+2/, not under EGTA. PDPc was limited-proteolysed by trypsin, chymotrypsin, Arg-C, and elastase at pH7.0 and 30$^{\circ}C$ and N-terminal analysis of the fragment was done. Chymotrypsin, trypsin, and elastase made two major framents: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx. 0 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35 kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Effect of the pat, fk, stpk Gene Knock-out and mdh Gene Knock-in on Mannitol Production in Leuconostoc mesenteroides

  • Peng, Yu-Wei;Jin, Hong-Xing
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2009-2018
    • /
    • 2018
  • Leuconostoc mesenteroides can be used to produce mannitol by fermentation, but the mannitol productivity is not high. Therefore, in this study we modified the chromosome of Leuconostoc mesenteroides by genetic methods to obtain high-yield strains for mannitol production. In this study, gene knock-out strains and gene knock-in strains were constructed by a two-step homologous recombination method. The mannitol productivity of the pat gene (which encodes phosphate acetyltransferase) deletion strain (${\Delta}pat::amy$), the fk gene (which encodes fructokinase) deletion strain (${\Delta}fk::amy$) and the stpk gene (which encodes serine-threonine protein kinase) deletion strain (${\Delta}stpk::amy$) were all increased compared to the wild type, and the productivity of mannitol for each strain was 84.8%, 83.5% and 84.1%, respectively. The mannitol productivity of the mdh gene (which encodes mannitol dehydrogenase) knock-in strains (${\Delta}pat::mdh$, ${\Delta}fk::mdh$ and ${\Delta}stpk::mdh$) was increased to a higher level than that of the single-gene deletion strains, and the productivity of mannitol for each was 96.5%, 88% and 93.2%, respectively. The multi-mutant strain ${\Delta}dts{\Delta}ldh{\Delta}pat::mdh{\Delta}stpk::mdh{\Delta}fk::mdh$ had mannitol productivity of 97.3%. This work shows that multi-gene knock-out and gene knock-in strains have the greatest impact on mannitol production, with mannitol productivity of 97.3% and an increase of 24.7% over wild type. This study used the methods of gene knock-out and gene knock-in to genetically modify the chromosome of Leuconostoc mesenteroides. It is of great significance that we increased the ability of Leuconostoc mesenteroides to produce mannitol and revealed its broad development prospects.