• Title/Summary/Keyword: series voltage compensator

Search Result 80, Processing Time 0.027 seconds

Voltage sag compensator of a high and precise quality for unbalanced three phase power system

  • Park, Hyen-Young;Oh, Se-Ho;Lee, Kyo-Sung;Kim, Do-Hun;Kim, Yang-mo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1394-1397
    • /
    • 2002
  • High electronic equipments for demand improvement and efficiency are requested the power superior quality. The compensation system of power quality is processing actively. We propose to a series voltage compensator and control algorithm using pid control in unbalanced three- phase power system when voltage sag occurs.

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Instantaneous Voltage Sag Corrector Using Series Compensator in Transfer Power Line Generator (송전선 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Min, Wan-Ki;Jeon, Byeong-Seok;Lee, Dae-Jong;Hong, Hyun-Mun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • This paper describes the novel control techniques design of VSC(Voltage Sag Corrector) for the purpose of power line quality enhancement. A fast detecting technique of voltage sag is implemented through the detection of instantaneous value on synchronous rotating do-reference frame. The first order digital filter is added in the detection algorithm to protect the insensitive characteristics against the noise. The relationship between the total detection time and cut-off frequency of the filter is described. The size of the capacitor bank used as the energy storage element is designed from the point of view of input/output energy with circuit analysis. Finally, the validity of the proposed scheme is proven through the simulated results.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

UPFC Modelling on RTDS (RTDS(Real Time Digital Simulator)를 이용한 UPFC(Unified Power Flow Controller) 모델링)

  • 김광수;이상중
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.47-50
    • /
    • 2001
  • In order for effective operation of existing power systems, introduction of the so-called FACTS(Flexible AC Transmission System) such as SVC and UPFC etc, is unavoidable. The UPFC(Unified Power Flow Controller) is composed of STATCOM(Static Compensator) and SSSC(Static Synchronous Series Compensator), and is used to control the magnitude and phase angle of injected sources which are connected bothin series and in parallel with the transmission line to control the power flow and bus voltages. This paper presents a UPFC simulation on RTDS. The voltage and phase angle of a system have been analyzed by regulating the firing angle inside the UPFC.

  • PDF

Installation of 80MVA UPFC(Unified Power Flow Controller) for improving voltage stability and reducing heavy load in KEPCO power systems (한전계통의 전압안정도 향상 및 과부하 해소를 위한 80MVA UPFC(Unified Power Flow Controller) 설치)

  • Oh, Kwan-Il;Chang, Byung-Hoon;Jeon, Young-Soo;Park, Sang-Tae;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.262-265
    • /
    • 2001
  • 최근 전력계통의 과부하, 전압안정도 등의 문제에 대한 해결책으로 FACTS (Flexible AC Transmission Systems)가 대두되고 있다. FACTS 설비에는 TCSC (Thyristor-Controlled Series Capacitor), SSSC (Static Synchronous Series Capacitor)와 같은 직렬 기기와 SVC(Static Var Compensator), STATCOM(STATic COMpensator) 와 같은 병렬기기 그리고, 본 논문에서 다루는 UPFC와 같은 직 병렬기기로 나누어진다. UPFC는 SSSC와 STATCOM을 결합한 형태로 유 무효전력을 동시에 보상할 수 있는 FACTS 기기이다. 본 논문에서는 한전 계통의 전압안정도 향상과 과부하 해소를 위해 강진S/S에 설치예정인 80MVA UPFC의 하드웨어 특성과 주변계통의 특성을 소개하고, UPFC와 한전 계통의 연계방안과 시험방안을 설명한다.

  • PDF

Steady-state Operational Strategies of UPFC in the KEPCO Transmission System

  • Chang, B.H.;Choo, J.B.;Xu, X.K.;Lam, B.P.
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.161-167
    • /
    • 2003
  • This paper presents a study performed to investigate the steady-state operational strategies of UPFCs in the Jeollanam-Do system in Korea. The objective of the study was to determine the UPFC operating points under normal and contingency conditions. The study consists of developing load flow models to simulate different load levels with and without UPFCs in the system, assessing the effectiveness of UPFCs by contingency analysis, and introducing optimal corrective actions for removing voltage problems caused by contingencies. The paper describes analytical tools, models and approach. It also includes analysis and discussion of the study results. The paper contributes to the area of transmission operational studies with FACTS applications.

Characteristic Analysis of Reactive-Power Compensator using Resonant Current-Source Inverter by simplification model (축소모형에 의한 공진형 전류원 인버터식 무효전력보상기의 특성 분석)

  • 한병문;백승택;박덕희;소용철
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.269-274
    • /
    • 1998
  • This paper describes a scaled model for PWM thyristor current-source inverter with a commutation circuit. The system consists of a 6-pulse thyristor bridge and an LC resonant circuit with thyristor switches, which offers thyristors to have turn-off capability for PWM operation with minimal switching losses. The proposed system can be used as a reactive power compensator with PWM operation for the utilitity application. There would be two advantages in the proposed system over the existing voltage source inverter. One is the low system cost due to using the conventional thyristors. Another is easy expansion of system operation voltage because th series operation of thyristor devices is already proven in HVDC system.

  • PDF

Inrush Current Suppression Method of the Reactive Power Compensator by using a Linear Region of the Switch (스위치의 선형영역을 이용한 무효전력보상기의 돌입전류 억제 방안)

  • Park, Seong-Mi;Kang, Seong-Hyun;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • In this paper, a new topology which can add a small reactor in series to a condenser-bank type reactive power compensator to limit current is proposed. And also the proposed topology can add or remove a power condenser safely without any addition of inrush-current suppression resistance. The proposed method tests variable resistance of the drain source of a switching device which is controlled by gate voltage in a two-way switch with a diode rectifier and FET switch. In other words, the proposed method is a inrush-current suppression method with the structure of variable resistance. In particular, the proposed method creates smooth current without any resonance in inrush-current as well as is not limited by the time of switch on and off.