• Title/Summary/Keyword: series capacitor compensation

Search Result 44, Processing Time 0.019 seconds

Load-Balance-Independent High Efficiency Single-Inductor Multiple-Output (SIMO) DC-DC Converters

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.300-312
    • /
    • 2014
  • A single-inductor multiple-output (SIMO) DC-DC converter providing buck and boost outputs with a new switching sequence is presented. In the proposed switching sequence, which does not require any additional blocks, input energy is delivered to outputs continuously by flowing current through the inductor, which leads to high conversion efficiency regardless of the balance between the buck and boost output loads. Furthermore, instead of multiple output loop compensation, only the freewheeling current feedback loop is compensated, which minimizes the number of off-chip components and nullifies the need for the equivalent series resistance (ESR) of the output capacitor for loop compensation. Therefore, power conversion efficiency and output voltage ripples can be improved and minimized, respectively. Implemented in a 0.35-${\mu}m$ CMOS, the proposed SIMO DC-DC converter achieves high conversion efficiency regardless of the load balance between the two outputs with maximum efficiency reaching up to 82% under heavy loads.

Eigen-analysis of SSR in Power Systems with Modular Network Model Equations (Modular 네트워크 모델 구성에 의한 전력계통 SSR 현상의 고유치해석)

  • Nam, Hae-Kon;Kim, Yong-Gu;Shim, Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1239-1246
    • /
    • 1999
  • This paper presents a new algorithm to construct the modular network model for SSR analysis by simply applying KCL to each node and KVL to all branches connected to the node sequentially. This method has advantages that the model can be derived directly from the system data for transient stability study and turbine/generator shaft model, the resulted model in the form of augmented state matrix is very sparse, and thus efficient SSR study of a large scale system becomes possible. The proposed algorithm is verified with the IEEE First and Second Benchmark models.

  • PDF

Boost Converter Modeling of Photovoltaic System Using PWM Switch Model (PWM 스윗치 모델을 이용한 PV용 Boost Converter Modelling)

  • Kim, H.J.;Lee, K.O.;Choi, J.Y.;Jung, Y.S.;Yu, G.J.;Kwon, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.286-293
    • /
    • 2002
  • Photovoltaic systems normally use a maximum power point tracking (MPPT) technique to continuously deliver the highest possible power to the load when variations in the insolation and temperature occur. A simple method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these Points is presented through deriving small-signal model and transfer function of boost converter. This paper aims at modeling boost converter including equivalent series resistance of input reservoir capacitor by state-space-averaging method and PWM switch model. In the future, properly designed controller for compensation will be constructed in real system for maximum photovoltaic power tracking control.

  • PDF

A Study on Condenser Characteristics at the Series Connection of Condenser and Reactor Under Voltage Unbalance (전압 불평형에서 콘덴서와 리액터의 직렬 연결시의 콘덴서의 특성 분석)

  • Kim, Il-Jung;Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Sung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.325-329
    • /
    • 2010
  • Capacitor has been used principally for the power factor compensation long ago. However now it does as passive filter to reduce harmonics of nonlinear load with reactor. Most of the customer's low-voltage feeder has been designed with approximately balanced and connected at the 3 phase four wire system. But voltage and current unbalance is appeared by the mixing operation of single or three phase load etc. The addition of reactor at the condenser may rise its terminal voltage. Voltage and current values above rating can act on electrical stress on the condenser. In this paper, we calculated and measured that voltage, current and capacity of condenser are changed under the voltage balance. We conclude that magnitude and deviation of phase voltage act on major point of electrical stress.

Voltage Comparison-type TCSC Using Recursive Discrete Fouier Transform (순차 프리에 변환(DFT)를 이용한 전압비교형 TCSC TCSC(Thyristor Control led Series Compensation))

  • Ko, S.K.;Park, S.Y.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.79-81
    • /
    • 1993
  • We have proposed a new technology compensating reactance component of line and load. Because capacity of SC is static, it is not appropriate to varing reactance and causes SSR problems. TCSC is introduced for the flecxible control of reactance of SC. If SC voltage is varied when the capacitor current is constant, it can be considered that capacity of SC was varied. SO capacity of SC can be controlled by controlling the voltage of SC. Control reference voltage of SC can be obtained from the condition that sum of reactive powers in all parts is zero.

  • PDF

AC/DC Resonant Converter to Control for DC Arc furnace (직류 전기아크로를 제어하기 위한 전원장치로서의 AC/DC 공진형 컨버터)

  • ;;Jaan Jarvik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • When solving the problems of electric power quality the converters with high Power factor are useful for the DC arc furnace power supply. In this paper, resonant converters of 50(60) Hz AC to DC arc described, where in each period of network voltage the capacitor and inductor of an oscillatory circuit are switched from series into parallel and vice versa parametrically. The duration of series and parallel connection and also the transformation ratio are dependent on load. Parallel oscillatory circuit restricts the short circuit current. These converters have high power factor from no-load to short-circuit and fit very well to supply are furnaces.

Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System (전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상)

  • 정현수;방성원;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • Recently, power quality problems in AC high-Speed Railway system have been raised, because heavy train and its higher speed are required in addition to new control system by using the Electronic devices. The installation/operation of the Series Capacitor(SC) has been only a device far voltage drop in power system up to now. However, the sufficient effectiveness of compensating In voltage drop has not been proved yet because of technical limitationf SC, and harmonic resonance is attracting a attention as one of new issues. Several problems are expected such as vocational problems of a traction substation, and overloading caused by a new construction of electric railway and the in transport. Therefore, extension of power feeding the fault in the traction substation should be also considered. So this paper represents the application of TSC-SVC on the electric railway power feeding system as a device of voltage compensation, and the simulations are executed through PSCAD/EMTDC.

Electric Power Energy Saving and Efficient Measures in Buildings using the Smart-Meter (스마트미터를 활용한 건축물의 전력에너지 절감 및 효율화 방안)

  • Hwang, Hyun Bae;Jung, Byeong Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.365-372
    • /
    • 2014
  • In this paper, We implement a power-saving and efficient measures in buildings using the smart-meter. In order to save electric power energy, We propose an improved automatic power-factor controller(APFC) and demand control measures. This is achieved by controlling directly circuit breakers and the capacitor bank feeders in real time via a two-way smart-meter's ICT skills. Improved APFC is minimizing installation costs by series-parallel connecting heterologous capacitors to form a more diverse capacitor banking and controlling using the smart-meter. In order to suppress the demand power, We have designed a smart-meter with communication functions using Atmel's AVR465 and tested an operated lodging building for 24-hours. As a result, We made sure to always retained more than 95% power factor and did not occur over compensation.

The Design and Implementation of a Control System for TCSC in the KERI Analog Power Simulator

  • Jeon, Jin-Hong;Kim, Kwang-Su;Kim, Ji-Won;Oh, Tae-Kyoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.129-133
    • /
    • 2004
  • This paper deals with the design and implementation of a TCSC (Thyristor Controlled Series Capacitor) simulator, which is a module for an analog type power system simulator. Principally, it presents configuration of controller hardware/software and its experimental results. An analog type power system simulator consists of numerous power system components, such as various types of generator models, scale-downed transmission line modules, transformer models, switches and FACTS (Flexible AC Transmission System) devices. It has been utilized for the verification of the control algorithm and the study of system characteristics analysis. This TCSC simulator is designed for 50% line compensation rate and considered for damping resister characteristic analysis. Its power rate is three phase 380V 20kVA. For hardware extendibility, its controller is designed with VMEBUS and its main CPU is TMS320C32 DSP (Digital Signal Processor). For real time control and communications, its controller is applied to the RTOS (Real Time Operation System) for multi-tasking. This RTOS is uC/OS-II. The experimental results of capacitive mode and inductive mode operations verify the fundamental operations of the TCSC.

the power flow control and voltage compensation by 20kVA prototype UPFC (20kVA급 Prototype UPFC의 전력조류제어와 모선전압보상)

  • Jeon, Jin-Hong;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.349-352
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency [1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design, implementation and test results of developed 20kVA level prototype UPFC. It is applied to power system simulator and controls the real and reactive power flow and shunt bus voltage magnitude.

  • PDF