• Title/Summary/Keyword: serial contact materials

Search Result 3, Processing Time 0.017 seconds

Water Quality Improvement Using Inverted Siphon Curved Channel System of Serial Contact Materials (연속접촉재 역사이폰 만곡수로 시스템의 수질개선)

  • Lee, Jong-Seok;Lee, Seung-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.541-550
    • /
    • 2011
  • This study sets the goal to improve effectively water quality of stream by complementing the weak points of the gravel contact oxidation process to use the inverted siphon curved channel system in free overfall of serial contact materials. The size of the current system can be diminished by expanding contact time, and the materials' replacement can be made easier when their gap are closed through the filtering boxes of contact materials. This system also has been developed into a construction method in which mixed and serial contact materials can be employed by using just the conventional single contact materials. It was verified the improvement ability of water quality of this system, during the simulation test at Tandong stream in Daejeon. The results of the verification of water quality improvement through several experiments in field were measured as follows : it showed to reduce about the averaged 55~83% higher than 60~75%, the internal planned goal of water quality improvement facilities.

Stepwise Ni-silicide Process for Parasitic Resistance Reduction for Silicon/metal Contact Junction

  • Choi, Hoon;Cho, Il-Whan;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2008
  • The parasitic resistance is studied to silicon/metal contact junction for improving device performance and to lower contact/serial resistance silicide in natural sequence. In this paper constructs the stepwise Ni silicide process for parasitic resistance reduction for silicon/metal contact junction. We have investigated multi-step Ni silicide on SiGe substrate with stepwise annealing method as an alternative to compose more thermally reliable Ni silicide layer. Stepwise annealing for silicide formation is exposed to heating environment with $5^{\circ}C/sec$ for 10 seconds and a dwelling for both 10 and 30 seconds, and ramping-up and the dwelling was repeated until the final annealing temperature of $700\;^{\circ}C$ is achieved. Finally a direct comparison for single step and stepwise annealing process is obtained for 20 nm nickel silicide through stepwise annealing is $5.64\;{\Omega}/square$ at $600\;^{\circ}C$, and it is 42 % lower than that of as nickel sputtered. The proposed stepwise annealing for Ni silicidation can provide the least amount of NiSi at the interface of nickel silicide and silicon, and it provides lower resistance, higher thermal-stability, and superior morphology than other thermal treatment.

Effect on bone healing by the application of low intensity pulsed ultrasound after injection of adipose tissue-derived stem cells at the implantation of titanium implant in the tibia of diabetes-induced rat (당뇨유도 백서 경골에 티타늄 임플란트 매식 시 지방조직 유래 줄기세포 주입 후 저출력 초음파 적용이 골치유에 미치는 영향)

  • Jung, Tae-Young;Park, Sang-Jun;Hwang, Dae-Suk;Kim, Yong-Deok;Lee, Soo-Woon;Kim, Uk-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.4
    • /
    • pp.301-311
    • /
    • 2011
  • Introduction: This study examined the effect of the application of low intensity pulsed ultrasound on bone healing after an injection of adipose tissue-derived stem cells (ADSCs) during the implantation of a titanium implant in the tibia of diabetes-induced rats. Materials and Methods: Twelve Sprague-Dawely rats were used. After inducing diabetes, the ADSCs were injected into the hole for the implant. Customized screw type implants, 2.0 mm in diameter and 3.5 mm in length, were implanted in both the tibia of the diabetes-induced rats. After implantation, LIPUS was applied with parameters of 3 MHz, 40 mW/$cm^2$, and 10 minutes for 7 days to the left tibiae (experimental group) of the diabetesinduced rats. The right tibiae in each rat were used in the control group. At 1, 2 and 4 week rats were sacrificed, and the bone tissues of both tibia were harvested. The bone tissues of the three rats in each week were used for bone-to-implant contact (BIC) and bone area (BA) analyses and the bone tissues of one rat were used to make sagittal serial sections. Results: In histomorphometric analyses, the BIC in the experimental and control group were respectively, $39.00{\pm}18.17%$ and $42.87{\pm}9.27%$ at 1 week, $43.74{\pm}6.83%$ and $32.27{\pm}6.00%$ at 2 weeks, and $32.62{\pm}11.02%$ and $47.10{\pm}9.77%$ at 4 weeks. The BA in experimental and control group were respectively, $37.28{\pm}3.68%$ and $31.90{\pm}2.84%$ at 1 week, $20.62{\pm}2.47%$ and $15.64{\pm}2.69%$ at 2 weeks, and $11.37{\pm}4.54%$ and $17.69{\pm}8.77%$ at 4 weeks. In immunohistochemistry analyses, Osteoprotegerin expression was strong at 1 and 2 weeks in the experimental group than the control group. Receptor activator of nuclear factor kB ligand expression showed similar staining at each week in the experimental and control group. Conclusion: These results suggest that the application of low intensity pulsed ultrasound after an injection of adipose tissue-derived stem cells during the implantation of titanium implants in the tibia of diabetes-induced rats provided some positive effect on bone regeneration at the early stage after implantation. On the other hand, this method is unable to increase the level of osseointegration and bone regeneration of the implant in an uncontrolled diabetic patient.