• Title/Summary/Keyword: sequential prediction

Search Result 166, Processing Time 0.028 seconds

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

IDENTIFICATION OF MODAL PARAMETERS BY SEQUENTIAL PREDICTION ERROR METHOD (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • Lee, Chang-Guen;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.79-84
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the autoregressive and moving average model with auxiliary stochastic input (ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then, the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story building model subject to ground exitations.

  • PDF

Improvement of Sequential Prediction Algorithm for Player's Action Prediction (플레이어 행동예측을 위한 순차예측 알고리즘의 개선)

  • Shin, Yong-Woo;Chung, Tae-Choong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • It takes quite amount of time to study a game because there are many game characters and different stages are exist for games. This paper used reinforcement learning algorithm for characters to learn, and so they can move intelligently. On learning early, the learning speed becomes slow. Improved sequential prediction method was used to improve the speed of learning. To compare a normal learning to an improved one, a game was created. As a result, improved character‘s ability was improved 30% on learning speed.

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

Short-Term Load Forecasting Based on Sequential Relevance Vector Machine

  • Jang, Youngchan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.318-324
    • /
    • 2015
  • This paper proposes a dynamic short-term load forecasting method that utilizes a new sequential learning algorithm based on Relevance Vector Machine (RVM). The method performs general optimization of weights and hyperparameters using the current relevance vectors and newly arriving data. By doing so, the proposed algorithm is trained with the most recent data. Consequently, it extends the RVM algorithm to real-time and nonstationary learning processes. The results of application of the proposed algorithm to prediction of electrical loads indicate that its accuracy is comparable to that of existing nonparametric learning algorithms. Further, the proposed model reduces computational complexity.

How Does the Presentation Mode of Product Information Affect Product Evaluation? : The Mediation of Construal Level and the Moderation of Response Time

  • Cho, Hyun Young
    • International Journal of Contents
    • /
    • v.16 no.1
    • /
    • pp.44-56
    • /
    • 2020
  • The purpose of this study was to examine how the presentation mode (sequential- vs. simultaneous-mode) of information influences its evaluation. Three experiments revealed the interaction effect between the presentation mode and the valence of the product information. When respondents read about the positive aspects of the product, the evaluation was higher in the simultaneous presentation mode than in the sequential presentation mode. For negative product information, respondents' evaluation was higher in the sequential presentation mode than in the simultaneous presentation mode. The simultaneous presentation mode intensified the impact of the information valence on evaluation. This study proposed that the sequential and the simultaneous presentation modes prime high and low construal levels, respectively. The mediation analysis provides support for such a prediction. Finally, the mediating effect of construal levels in evaluation was shown to disappear when respondents focused on the product information for a longer duration, while the mediation effect remained when the response time was short.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Design of a User Location Prediction Algorithm Using the Cache Scheme (캐시 기법을 이용한 위치 예측 알고리즘 설계)

  • Son, Byoung-Hee;Kim, Sang-Hee;Nahm, Eui-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.375-381
    • /
    • 2007
  • This paper focuses on the prediction algorithm among the context-awareness technologies. With a representative algorithm, Bayesian Networks, it is difficult to realize a context-aware as well as to decrease process time in real-time environment. Moreover, it is also hard to be sure about the accuracy and reliability of prediction. One of the simplest algorithms is the sequential matching algorithm. We use it by adding the proposed Cache Scheme. It is adequate for a context-aware service adapting user's habit and reducing the processing time by average 48.7% in this paper. Thus, we propose a design method of user location prediction algorithm that uses sequential matching with the cache scheme by taking user's habit or behavior into consideration. The novel approach will be dealt in a different way compared to the conventional prediction algorithm.

Identification of Model Parameters by Sequential Prediction Error Method (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • 윤정방;이창근
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.143-148
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the auto regressive and moving average model with auxiliary stochastic input(ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story budding model subject to ground exitations.

  • PDF