순차 패턴 탐색은 데이터 마이닝의 주요 기법 중의 하나로서 웹기반 시스템, 전자상거래, 생물정보학 및 USN 환경 등과 같은 여러 컴퓨터 응용 분야에서 생성되는 데이터를 효율적으로 분석하기 위하여 널리 활용되고 있다. 한편 이들 응용 분야에서 생성되는 정보들은 근래들어 한정적인 데이터 집합이 아닌 구성요소가 지속적으로 생성되는 데이터 스트림 형태로 생성되고 있다. 이러한 상황을 고려하여 데이터 스트림에서 순차패턴 탐색에 대한 연구들도 활발히 진행되고 있다. 하지만 이전의 연구들은 주로 분석 대상 데이터 스트림에서 단순 순차패턴을 구하는 과정에서 마이닝 수행 시간이나 메모리 사용량 등을 줄이는데 초점을 맞추고 있으며, 따라서 해당 데이터 스트림의 특성을 효율적으로 표현할 수 있는 보다 중요하고 의미있는 패턴들을 탐색하기 위한 연구는 거의 진행되지 못하고 있다. 본 논문에서는 데이터 스트림에서 보다 의미있는 순차패턴을 탐색하기 위한 방법으로 구성요소의 발생 간격 제한 조건을 활용한 빈발 순차패턴 탐색 방법을 제안한다. 먼저 발생 간격 정의 기준 및 발생 간격제한 빈발 순차패턴의 개념을 제시하고, 이어서 데이터 스트림에서 발생 간격 제한 조건을 적용하여 빈발 순차패턴을 효율적으로 탐색할 수 있는 마이닝 방법을 제안한다.
This paper introduces a sequential clustering technique as a tool for an effective grouping of transmission systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the similarity measures of regional information with the similarity measures of location price, and introduce the techniques of the clustering method. This transmission usage rate uses power flow based on congestion costs and similarity measurements using the FCM(Fuzzy C-Mean) algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS and Korea power system.
데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.
本 論文은 Galois Field를 利用하여 順序多値論理回路를 實現하는 하나의 방법을 제시하였다. 먼저 Taylor급수를 有限體上에서 成立하는 多項式에 對應하도록 전개시켜 多値組合論理回路의 固有行列을 산출하고 이 行列을 근거로 順序多値論理回路를 設計하였다. 本 論文은 組合回路를 構成하는 基本 개념을 順序論理回路에도 적용될 수 있도록 擴張한 것이다. 本 論文에서는 우선 組合論理回路의 構成理論을 擴張하여 單一入力 單一出力인 경우의 順序多値論理函數構成理論을 提示한 후 이를 擴張하여 單一入力 多出力인 경우의 順序多置論理函數構成理論을 提示하였다. 또한 이를 더욱 擴張하여 單一變數는 물론 多變數 多出力인 경우까지 提示하였다. 이때 多出力인 경우는 回路가 상호 獨立的이므로 Partition 개념에 의하여 처리하였다. 이 방법에 依하여 順序多値論理回路를 設計하면 종래의 多項式전개에 必要한 방대한 계산과정을 줄일 수 있었다. 또한 行列연산에 의하여 계산하므로 아무리 복잡한 論理函數라 하더라도 Computer Program처리가 가능하였다.
The performance issues of screening large database compounds and multiple query compounds in virtual screening highlight a common concern in Chemoinformatics applications. This study investigates these problems by choosing group fusion as a pilot model and presents efficient parallel solutions in parallel platforms, specifically, the multi-core architecture of CPU and many-core architecture of graphical processing unit (GPU). A study of sequential group fusion and a proposed design of parallel CUDA group fusion are presented in this paper. The design involves solving two important stages of group fusion, namely, similarity search and fusion (MAX rule), while addressing embarrassingly parallel and parallel reduction models. The sequential, optimized sequential and parallel OpenMP of group fusion were implemented and evaluated. The outcome of the analysis from these three different design approaches influenced the design of parallel CUDA version in order to optimize and achieve high computation intensity. The proposed parallel CUDA performed better than sequential and parallel OpenMP in terms of both execution time and speedup. The parallel CUDA was 5-10x faster than sequential and parallel OpenMP as both similarity search and fusion MAX stages had been CUDA-optimized.
데이터 마이닝에서 연속패턴(sequential pattern) 생성기술은 시차를 두고 발생한 사건들에 대하여 잠재해있는 패턴을 발견하는 기술을 의미한다. 본 연구는 정보이론을 이용하여 데이터베이스로부터 연속패턴을 자동으로 발견하는 방법에 관한 내용이다. 기존의 방법들이 한 속성내에서의 연속패턴만을 탐지하는 일차원 연속패턴을 생성하는데 비하여 본 연구에서 제시하는 방법은 데이터베이스내의 모든 속성간의 연속패턴 관계를 탐지할 수 있는 다차원 연속패턴을 생성할 수 있다. 본 연구에서는 연속패턴 생성을 위하여 헬링거(Hellinger) 변량을 사용하였으며 이를 이용하여 발견된 연속패턴들의 중요도를 측정할 수 있었다. 또한 헬링거 변량의 함수적인 특성을 분석하여 연속패턴 추출의 복잡도를 줄이기 위한 두 가지의 법칙이 제안되었고 다수의 실험 데이터를 통하여 다차원의 연속패턴을 생성할 수 있음을 보였다.
시퀀스(sequence) 데이터가 주어졌을 때 그 중에서 빈번(frequent)한 순차 패턴을 찾는 순차 패턴 마이닝(sequential pattern mining)은 여러 어플리케이션(application)에 사용되는 중요한 데이터마이닝 문제이다. 순차 패턴 마이닝은 웹 접속 패턴, 고객 구매 패턴, 특정 질병의 DNA 시퀀스를 찾는 등 광범위한 분야에서 사용된다. 본 논문에서는 맵리듀스(MapReduce) 프레임웍 상에서 맵리듀스 함수 호출을 최적화하는 순차 패턴 마이닝 알고리즘을 개발하였다. 이 알고리즘은 여러 대의 기계에 데이터들을 분산시켜 병렬적으로 빈번한 순차 패턴을 찾는다. 실험적으로 다양한 데이터를 이용하여 파라미터 값을 변화시켜가며 제안된 알고리즘의 성능을 종합적으로 확인하였다. 그리고 실험 결과를 통해 제안된 알고리즘은 기계 수에 대해 선형적인 속도 개선을 보인다는 것을 확인하였다.
연속패턴은 다양한 분야에서 사용되는 데이타 마이닝 기법의 한 종류이다. 하지만 현재의 연속 패턴 방법은 한개의 속성내에서의 패턴만을 감지할 수 있으며 속성간의 패턴을 생성할 수 없다. 다차원의 연속패턴은 일차원에 비하여 훤씬 유용한 정보를 제공할 수 있다. 본 연구에서는 Hellinger 엔트로피 함수를 사용하여 다차원의 연속패턴을 생성하는 방법을 게시한다 기존의 연속패턴방법과 달리 본 방법에서는 각 연속패턴의 중요도를 자동으로 계산할 수 있다. 또한 계산의 복잡도를 감소시키기 위한 다수의 법칙이 개발되었으며 다수의 실험 결과를 제시하였다.
Fault simulators are used for accurate evaluation of fault coverages of digital circuits. But fault simulation becomes time and memory consuming job because computation time is proportional to wquare of size of circuits. Recently, several approximate algorithms for testability analysis have been published to cope with the problems. COP is very fast but cannot be used for sequential circuits, while STAFAN can ve used for sequential circuits but requires large amount of computation because it utilizes logic simulation results. In this paper EXTASEC(An Extension of Testability Analysis for Sequential Circuits) is proposed. It is an extension of COP in the sense that it is the same as COP for combinational circuits, but it can handle sequential circuits, Xicontrollability and backward line analysis are key concept for EXTASEC. Performance of EXTASEC is proven by comparing EXTASEC with a falut simulator, STAFAN, and COP for ISCAS circuits, and the result is demonstated.
Communications for Statistical Applications and Methods
/
제13권1호
/
pp.191-204
/
2006
This paper develops a Bayesian method to derive the optimal sequential preventive maintenance(PM) policy by determining the PM schedules which minimize the mean cost rate. Such PM schedules are derived based on a general sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) and may have unequal length of PM intervals. To apply the Bayesian approach in this problem, we assume that the failure times follow a Weibull distribution and consider some appropriate prior distributions for the scale and shape parameters of the Weibull model. The solution is proved to be finite and unique under some mild conditions. Numerical examples for the proposed optimal sequential PM policy are presented for illustrative purposes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.