• Title/Summary/Keyword: sequence-to-sequence model

Search Result 1,626, Processing Time 0.032 seconds

Structural results and a solution for the product rate variation problem : A graph-theoretic approach

  • Choe Sang-Woong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.250-278
    • /
    • 2004
  • The product rate variation problem, to be called the PRVP, is to sequence different type units that minimizes the maximum value of a deviation function between ideal and actual rates. The PRVP is an important scheduling problem that arises on mixed-model assembly lines. A surge of research has examined very interesting methods for the PRVP. We believe, however, that several issues are still open with respect to this problem. In this study, we consider convex bipartite graphs, perfect matchings, permanents and balanced sequences. The ultimate objective of this study is to show that we can provide a more efficient and in-depth procedure with a graph theoretic approach in order to solve the PRVP. To achieve this goal, we propose formal alternative proofs for some of the results stated in the previous studies, and establish several new results.

  • PDF

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Resource and Sequence Optimization Using Constraint Programming in Construction Projects

  • Kim, Junyoung;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk;Joo, Seonu;Yoon, Inseok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.608-615
    • /
    • 2022
  • Construction projects are large-scale projects that require extensive construction costs and resources. Especially, scheduling is considered as one of the essential issues for project success. However, the schedule and resource management are challenging to conduct in high-tech construction projects including complex design of MEP and architectural finishing which has to be constructed within a limited workspace and duration. In order to deal with such a problem, this study suggests resource and sequence optimization using constraint programming in construction projects. The optimization model consists of two modules. The first module is the data structure of the schedule model, which consists of parameters for optimization such as labor, task, workspace, and the work interference rate. The second module is the optimization module, which is for optimizing resources and sequences based on Constraint Programming (CP) methodology. For model validation, actual data of plumbing works were collected from a construction project using a five-minute rate (FMR) method. By comparing actual data and optimized results, this study shows the possibility of reducing the duration of plumbing works in construction projects. This study shows decreased overall project duration by eliminating work interference by optimizing resources and sequences within limited workspaces.

  • PDF

STOCHASTIC SINGLE MACHINE SCHEDULING SUBJECT TO MACHINES BREAKDOWNS WITH QUADRATIC EARLY-TARDY PENALTIES FOR THE PREEMPTIVE-REPEAT MODEL

  • Tang, Hengyong;Zhao, Chuanli
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.183-199
    • /
    • 2007
  • In this paper we research the problem in which the objective is to minimize the sum of squared deviations of job expected completion times from the due date, and the job processing times are stochastic. In the problem the machine is subject to stochastic breakdowns and all jobs are preempt-repeat. In order to show that the replacing ESSD by SSDE is reasonable, we discuss difference between ESSD function and SSDE function. We first give an express of the expected completion times for both cases without resampling and with resampling. Then we show that the optimal sequence of the problem V-shaped with respect to expected occupying time. A dynamic programming algorithm based on the V-shape property of the optimal sequence is suggested. The time complexity of the algorithm is pseudopolynomial.

Extraction of Geometric Components of Buildings with Gradients-driven Properties

  • Seo, Su-Young;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.723-733
    • /
    • 2009
  • This study proposes a sequence of procedures to extract building boundaries and planar patches through segmentation of rasterized lidar data. Although previous approaches to building extraction have been shown satisfactory, there still exist needs to increase the degree of automation. The methodologies proposed in this study are as follows: Firstly, lidar data are rasterized into grid form in order to exploit its rapid access to neighboring elevations and image operations. Secondly, propagation of errors in raw data is taken into account for in assessing the quality of gradients-driven properties and further in choosing suitable parameters. Thirdly, extraction of planar patches is conducted through a sequence of processes: histogram analysis, least squares fitting, and region merging. Experimental results show that the geometric components of building models could be extracted by the proposed approach in a streamlined way.

Decision-Tree-Based Markov Model for Phrase Break Prediction

  • Kim, Sang-Hun;Oh, Seung-Shin
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.527-529
    • /
    • 2007
  • In this paper, a decision-tree-based Markov model for phrase break prediction is proposed. The model takes advantage of the non-homogeneous-features-based classification ability of decision tree and temporal break sequence modeling based on the Markov process. For this experiment, a text corpus tagged with parts-of-speech and three break strength levels is prepared and evaluated. The complex feature set, textual conditions, and prior knowledge are utilized; and chunking rules are applied to the search results. The proposed model shows an error reduction rate of about 11.6% compared to the conventional classification model.

  • PDF

Supply Chain Planning in Multiplant Network (다중플랜트 네트워크에서의 공급사슬계획)

  • Jeong Jae-Hyeok;Mun Chi-Ung;Kim Jong-Su
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.203-208
    • /
    • 2002
  • In case of the problems with multiple plants, alternative operation sequence, alternative machine, setup time, and transportation time between plants, we need a robust methodology for the integration of process planning and scheduling in supply chain. The objective of this model is to minimize the tardiness and to maximize the resource utilization. So, we propose a multi-objective model with limited-capacity constraint. To solve this model, we develope an efficient and flexible model using adaptive genetic algorithm(AGA), compared to traditional genetic algorithm(TGA)

  • PDF

UML Sequence Diagram Based Test Case Extraction and Testing for Ensuring Reliability of Web Applications (웹 응용 신뢰성 확보를 위한 UML 순차도 기반의 시험사례 추출 및 시험)

  • 정기원;조용선
    • The Journal of Society for e-Business Studies
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2004
  • The systematic testing is frequently regretted in recent web applications because of time and cost pressure. Moreover developers have difficulties with applying the traditional testing techniques to testing web application. The approach of creating test cases for a web application from a sequence model is proposed for the rapid and efficient testing. Test cases for web application are extracted from call messages (including self-call messages) of UML (Unified Modeling Language) sequence diagram. A test case consists of messages, script functions, or server pages and additional values. Moreover a simple testing tool for web application is proposed. A URL for testing web application is created and executed by this testing tool. The URL consists of server page address and additional values. This test tool is made using Microsoft Visual Basic. The efficiency of proposed method and tool has been shown using a practical case study which reflects the development project of the web application for supporting member management.

  • PDF

Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process (쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교)

  • Baek, Jong-Bae;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.564-573
    • /
    • 2014
  • Economic optimization of cumene manufacturing process to produce cumene from benzene and propylene was studied. The chosen objective function was the operational profit per year that subtracted capital cost, utility cost, and reactants cost from product revenue and other benefit. The number of design variables of the optimization are 6. Matlab connected to and controlled Unisim Design to calculate operational profit with the given design variables. As the first step of the optimization, design variable points was sampled and operational profit was calculated by using Unisim Design. By using the sampled data, the estimation model to calculate the operational profit was constructed, and the optimization was performed on the estimation model. This study compared second order polynomial and support vector regression as the estimation method. As the sampling method, central composite design was compared with Hammersley sequence sampling. The optimization results showed that support vector regression and Hammersley sequence sampling were superior than second order polynomial and central composite design, respectively. The optimized operational profit was 17.96 MM$ per year, which was 12% higher than 16.04 MM$ of base case.

Implementation of Mouse Function Using Web Camera and Hand (웹 카메라와 손을 이용한 마우스 기능의 구현)

  • Kim, Seong-Hoon;Woo, Young-Woon;Lee, Kwang-Eui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, we proposed an algorithm implementing mouse functions using hand motion and number of fingers which are extracted from an image sequence. The sequence is acquired through a web camera and processed with image processing algorithms. The sequence is first converted from RGB model to YCbCr model to efficiently extract skin area and the extracted area is further processed using labeling, opening, and closing operations to decide the center of a hand. Based on the center position, the number of fingers is decided, which serves as the information to decide and perform a mouse function. Experimental results show that 94.0% of pointer moves and 96.0% of finger extractions are successful, which opens the possibility of further development for a commercial product.