• Title/Summary/Keyword: sequence-based method

Search Result 1,760, Processing Time 0.029 seconds

Nonparametric Nonlinear Model Predictive Control

  • Kashiwagi, Hiroshi;Li, Yun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1443-1448
    • /
    • 2003
  • Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impounded by linear models due to the lack of a similarly accepted nonlinear modelling or data based technique. The authors have recently developed a new method for obtaining Volterra kernels of up to third order by use of pseudorandom M-sequence. By use of this method, nonparametric NMPC is derived in discrete-time using multi-dimensional convolution between plant data and Volterra kernel measurements. This approach is applied to an industrial polymerisation process using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC.

  • PDF

A GA-based Floorplanning method for Topological Constraint

  • Yoshikawa, Masaya;Terai, Hidekazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1098-1100
    • /
    • 2005
  • The floorplanning problem is an essential design step in VLSI layout design and it is how to place rectangular modules as density as possible. And then, as the DSM advances, the VLSI chip becomes more congested even though more metal layers are used for routing. Usually, a VLSI chip includes several buses. As design increases in complexity, bus routing becomes a heavy task. To ease bus routing and avoid unnecessary iterations in physical design, we need to consider bus planning in early floorplanning stage. In this paper, we propose a floorplanning method for topological constraint consisting of bus constraint and memory constraint. The proposed algorithms based on Genetic Algorithm(GA) is adopted a sequence pair. For selection control, new objective functions are introduced for topological constraint. Studies on floor planning and cell placement have been reported as being applications of GA to the LSI layout problem. However, no studies have ever seen the effect of applying GA in consideration of topological constraint. Experimental results show improvement of bus and memory constraint.

  • PDF

Nonlinear analysis of PSC bridge with strengthened of externally tendon Considering Construction Sequences (외부강선으로 보강된 PSC 교량의 시공단계별 비선형 해석)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering the work sequence, using beam-column element based on flexibility method and tendon element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The tendon element represent the bonded tendon and unbonded tendon behaviors. Beam-column element and tendon element was be subroutine A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of RC and PSC structures was used. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

  • PDF

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine

  • Kim, Jong-Kyoung;Raghava, G. P. S.;Kim, Kwang-S.;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.158-166
    • /
    • 2004
  • Predicting the destination of a protein in a cell gives valuable information for annotating the function of the protein. Recent technological breakthroughs have led us to develop more accurate methods for predicting the subcellular localization of proteins. The most important factor in determining the accuracy of these methods, is a way of extracting useful features from protein sequences. We propose a new method for extracting appropriate features only from the sequence data by computing pairwise sequence alignment scores. As a classifier, support vector machine (SVM) is used. The overall prediction accuracy evaluated by the jackknife validation technique reach 94.70% for the eukaryotic non-plant data set and 92.10% for the eukaryotic plant data set, which show the highest prediction accuracy among methods reported so far with such data sets. Our numerical experimental results confirm that our feature extraction method based on pairwise sequence alignment, is useful for this classification problem.

  • PDF

Selection of Signal Strength and Detection Threshold for Optimal Tracking with Nearest Neighbor Filter (NN 필터 추적을 위한 최적 신호 강도 및 검출 문턱값 선택)

  • Jeong, Yeong-Heon;Gwon, Il-Hwan;Hong, Sun-Mok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • In this paper, we formulate an optimal control problem to obtain the optimal signal strength and detection threshold for tracking with NN filter, First, we predict the tracking performance of NN filter by using the HYCA method. Based on this method, the predicted tracking performance is represented with respect to signal strength and detection threshold. Using this relation, we find the optimal parameters for following three examples: 1) the sequence of optimal detection threshold which minimizes sum of position estimation error; 2) the sequence of optimal detection threshold which minimizes sum of validation gate volume; and 3) the sequence of optimal signal strength and detection threshold which minimizes sum of signal strength.

  • PDF

Error Detection of Phase Offsets for Binary Sequences (이원부호의 위상오프셋 오류 검출)

  • Song, Young-Joon;Han, Young-Yearl
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.27-35
    • /
    • 1999
  • In this paper, we propose an error detection scheme of phase offsets for binary sequences including PN (Pseudo Noise) sequences based on the number theoretical approach. It is important to know phase offsets of spreading sequences in the CDMA (Code Division Multiple Access) mobile communication systems because phase offsets of the same spreading sequence are used to achieve the acquisition and are used to distinguish each base station. When the period of the sequence is not very long, the relative phase offset between the sequence and its shifted replica can be found by comparing them, but as the period of the sequence increases it becomes difficult to find the phase offset. The error detection failure probability of the proposed method is derived, and it is confirmed by the simulation results. We also discuss the circuit realization of the proposed method and show it can be easily implemented.

  • PDF

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

A Method for Mining Interval Event Association Rules from a Set of Events Having Time Property (시간 속성을 갖는 이벤트 집합에서 인터벌 연관 규칙 마이닝 기법)

  • Han, Dae-Young;Kim, Dae-In;Kim, Jae-In;Na, Chol-Su;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.185-190
    • /
    • 2009
  • The event sequence of the same type from a set of events having time property can be summarized in one event. But if the event sequence having an interval, It is reasonable to be summarized more than one in independent sub event sequence of each other. In this paper, we suggest a method of temporal data mining that summarizes the interval events based on Allen's interval algebra and finds out interval event association rule from interval events. It provides better knowledge than others by using concept of an independent sub sequence and finding interval event association rules.

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.