• Title/Summary/Keyword: sequence analysis

Search Result 6,351, Processing Time 0.036 seconds

Insilico Analysis for Expressed Sequence Tags from Embryogenic Callus and Flower Buds of Panax ginseng C. A. Meyer

  • Sathiyamoorthy, Subramaniyam;In, Jun-Gyo;Lee, Byum-Soo;Kwon, Woo-Seang;Yang, Dong-Uk;Kim, Ju-Han;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Panax ginseng root has been used as a major source of ginsenoside throughout the history of oriental medicine. In recent years, scientists have found that all of its biomass, including embryogenic calli and flower buds can contain similar active ingredients with pharmacological functions. In this study, transcriptome analyses were used to identify different gene expressions from embryogenic calli and fl ower buds. In total, 6,226 expressed sequence tags (ESTs) were obtained from cDNA libraries of P. ginseng. Insilico analysis was conducted to annotate the putative sequences using gene ontology functional analysis, Kyoto Encyclopedia of Genes and Genomes orthology biochemical analysis, and interproscan protein functional domain analysis. From the obtained results, genes responsible for growth, pathogenicity, pigments, ginsenoside pathway, and development were discussed. Almost 83.3% of the EST sequence was annotated using one-dimensional insilico analysis.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Realistic Analysis Method for Continuously Block-Placed Mass Concrete Structures Considering Block Size and Sequence of Concrete Placement (매스 콘크리트 구조물의 연속 분할타설시 타설블록의 크기 및 타설순서를 고려한 합리적인 수화열 해석)

  • 오병환;전세진;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 1999
  • The mass concrete structures are generally constructed in an incremental manner by deviding the whole structures by a series of many blocks. The temperature and stress distributions of any specific block are continuously affected by the blocks placed before and after the specific block. For an accurate analysis of mass concrete structures, the sequence of all the blocks must be accordingly considered including the change of material properties with time for those blocks considered. The purpose of this study is to propose a realistic analysis method which can take into account not only the influence of the sequence, time interval and size of concrete block placement on the temperatures and stresses, but also the change of material properties with time. It is seen from this study that the conventional simplified analysis, which neglects material property changes of some blocks with time and does not consider the effect of adjacent blocks in the analysis, may yield large discrepancies in the temperature and stress distributions of mass concrete structures. This study gives a method to choose the minimum number of blocks required to obtain reasonably accurate results in analysis. The study provides a realistic method which can determine the appropriate size and time interval of block placement, and can be efficiently used in the design and construction of mass concrete structures.

Analysis of Instantaneous Voltage Compensator Using 3-Phase PWM Inverter (3상 PWM 인버터를 이용한 순간전압보상기의 해석)

  • 최연규;이승요;최규하;목형수;함형원
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.222-227
    • /
    • 1997
  • Unbalanced source voltages due to unbalanced loads in the 3-phase power system is decomposed into positive, negative and zero sequence components. Also, assuming there is no neutural path in the system, the zero sequence component is not shown. Therefore, it is possible to compensate unbalanced source voltage by canceling the negative sequency component of the voltages of the source. In this paper, an algorithm compensating unbalanced source voltages by canceling the negative sequence component is presented and analysis of instantaneous voltage compensator using 3-phase PWM inverter is carried out through computer simulation.

  • PDF

Output Voltage Ripple Analysis of Quantum Series Resonant Converter (QSRC의 출력전압맥동해석)

  • 임성운;권우현;조규형
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.141-149
    • /
    • 1994
  • In this paper, we could find optimum quantum sequence(OQS) to minimize the output ripple voltage of the quantum series resonant converter(QSRC). This sequence control is so general that it is irrelevant to the voltage gain so far as it is operating in the continuous conduction mode(CCM). Further more the dynamic range of QSRC is much extended by the optimum quantum sequence control(OQSC). Througuout the time-domain analysis, the solution of steady state and the boundary condition between continuous and discontinuous mode is QSRC is obtained. This feature is verified by simulations and experiments with good agreements.

  • PDF

The Scene Analysis and Keyframe Extraction for Content-Based Indexing on Compressed Image Sequence (압축된 영상 시퀀스에서 내용 기반 색인을 위한 장면 분석 및 키 프레임 추출)

  • 오상헌;김상렬;김주도;이근영
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.605-608
    • /
    • 1999
  • In this paper, we proposed several scene analysis algorithms. These algorithms using image difference and histogram operate on the sequence of DC coefficient which is extracted from Motion JPEG or MPEG without full-frame decompression. Since DC sequence has the most information of full frame while it has reduced data. Experimental results show less than 1/64 of full frame analysing complexity and exactly analyze scene changes and extract key frames.

  • PDF

Molecular Analysis of Complete SSU to LSU rDNA Sequence in the Harmful Dinoflagellate Alexandrium tamarense (Korean Isolate, HY970328M)

  • Ki, Jang-Seu;Han, Myung-Soo
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.155-166
    • /
    • 2005
  • New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A. tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

Flow Cytometric Analysis of Human Lysozyme Production in Recombinant Saccharomyces cerevisiae

  • Peterson Marvin S.;Kim Myoung-Dong;Han Ki-Cheol;Kim Ji-Hyun;Seo Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.52-55
    • /
    • 2002
  • Flow cytometric techniques were used to investigate cell size, protein content and cell cycle behavior of recombinant Saccharomyces cerevisiae strains producing human lysozyme (HLZ). Two different signal sequences, the native yeast $MF\alpha1$ signal sequence and the rat $\alpha-amylase$ signal sequence, were used for secretion of HLZ. The strain containing the rat $\alpha-amylase$ signal sequence showed a higher level of internal lysozyme and lower specific growth rates. Flow cytometric analysis of the total protein content and cell size showed the strain harboring the native yeast signal sequence had a higher total protein content than the strain containing the rat $\alpha-amylase$ signal sequence. Cell cycle analysis indicated that the two lysozyme producing recombinant strains had an increased number of cells in the $G_2+M$ phase of the yeast cell cycle compared with the host strain SEY2102.

Identification of Viral Taxon-Specific Genes (VTSG): Application to Caliciviridae

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.23.1-23.5
    • /
    • 2018
  • Virus taxonomy was initially determined by clinical experiments based on phenotype. However, with the development of sequence analysis methods, genotype-based classification was also applied. With the development of genome sequence analysis technology, there is an increasing demand for virus taxonomy to be extended from in vivo and in vitro to in silico. In this study, we verified the consistency of the current International Committee on Taxonomy of Viruses taxonomy using an in silico approach, aiming to identify the specific sequence for each virus. We applied this approach to norovirus in Caliciviridae, which causes 90% of gastroenteritis cases worldwide. First, based on the dogma "protein structure determines its function," we hypothesized that the specific sequence can be identified by the specific structure. Firstly, we extracted the coding region (CDS). Secondly, the CDS protein sequences of each genus were annotated by the conserved domain database (CDD) search. Finally, the conserved domains of each genus in Caliciviridae are classified by RPS-BLAST with CDD. The analysis result is that Caliciviridae has sequences including RNA helicase in common. In case of Norovirus, Calicivirus coat protein C terminal and viral polyprotein N-terminal appears as a specific domain in Caliciviridae. It does not include in the other genera in Caliciviridae. If this method is utilized to detect specific conserved domains, it can be used as classification keywords based on protein functional structure. After determining the specific protein domains, the specific protein domain sequences would be converted to gene sequences. This sequences would be re-used one of viral bio-marks.

Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method

  • Fang Zhao ;Shuliang Zou ;Shoulong Xu ;Junlong Wang;Tao Xu;Dewen Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4560-4570
    • /
    • 2022
  • Dynamic fault tree (DFT) and its related research methods have received extensive attention in safety analysis and reliability engineering. DFT can perform reliability modelling for systems with sequential correlation, resource sharing, and cold and hot spare parts. A technical modelling method of DFT is proposed for modelling ship collision accidents and loss-of-coolant accidents (LOCAs). Qualitative and quantitative analyses of DFT were carried out using the cutting sequence (CS)/extended cutting sequence (ECS) method. The results show nine types of dynamic fault failure modes in ship collision accidents, describing the fault propagation process of a dynamic system and reflect the dynamic changes of the entire accident system. The probability of a ship collision accident is 2.378 × 10-9 by using CS. This failure mode cannot be expressed by a combination of basic events within the same event frame after an LOCA occurs in a marine nuclear reactor because the system contains warm spare parts. Therefore, the probability of losing reactor control was calculated as 8.125 × 10-6 using the ECS. Compared with CS, ECS is more efficient considering expression and processing capabilities, and has a significant advantage considering cost.