Browse > Article
http://dx.doi.org/10.5142/jgr.2011.35.1.021

Insilico Analysis for Expressed Sequence Tags from Embryogenic Callus and Flower Buds of Panax ginseng C. A. Meyer  

Sathiyamoorthy, Subramaniyam (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
In, Jun-Gyo (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
Lee, Byum-Soo (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
Kwon, Woo-Seang (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
Yang, Dong-Uk (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
Kim, Ju-Han (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
Yang, Deok-Chun (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.35, no.1, 2011 , pp. 21-30 More about this Journal
Abstract
Panax ginseng root has been used as a major source of ginsenoside throughout the history of oriental medicine. In recent years, scientists have found that all of its biomass, including embryogenic calli and flower buds can contain similar active ingredients with pharmacological functions. In this study, transcriptome analyses were used to identify different gene expressions from embryogenic calli and fl ower buds. In total, 6,226 expressed sequence tags (ESTs) were obtained from cDNA libraries of P. ginseng. Insilico analysis was conducted to annotate the putative sequences using gene ontology functional analysis, Kyoto Encyclopedia of Genes and Genomes orthology biochemical analysis, and interproscan protein functional domain analysis. From the obtained results, genes responsible for growth, pathogenicity, pigments, ginsenoside pathway, and development were discussed. Almost 83.3% of the EST sequence was annotated using one-dimensional insilico analysis.
Keywords
Ginsenoside pathway; Panax ginseng; Expressed sequence tags; Flower buds;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Dharmawardhana DP, Ellis BE, Carlson JE. cDNA cloning and heterologous expression of coniferin beta-glucosidase. Plant Mol Biol 1999;40:365-372.   DOI   ScienceOn
2 Pulla RK, Shim JS, Kim YJ, Jeong DY, In JG, Lee BS, Yang DC. Molecular cloning and characterization of the gene encoding cinnamyl alcohol dehydrogenase in Panax ginseng C. A. Meyer. Korean J Med Crop Sci 2009;17:266-272.   과학기술학회마을
3 Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M. Water defi cits affect caffeate O-methyltransferase, lignifi cation, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 2005;137:949-960.   DOI   ScienceOn
4 Lu S, Zhou Y, Li L, Chiang VL. Distinct roles of cinnamate 4-hydroxylase genes in Populus. Plant Cell Physiol 2006;47:905-914.   DOI   ScienceOn
5 Kim YJ, Lee JH, Jung DY, Sathiyaraj G, Shim JS, In JG, Yang DC. Isolation and characterization of pathogenesisrelated protein 5 (PgPR5) gene from Panax ginseng. Plant Pathol J 2009;25:400-407.   DOI   ScienceOn
6 Pulla RK, Lee OR, In JG, Kim YJ, Senthil K, Yang DC. Expression and functional characterization of pathogenesisrelated protein family 10 gene, PgPR10-2, from Panax ginseng C. A. Meyer. Physiol Mol Plant Pathol 2010;74:323-329.   DOI   ScienceOn
7 Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 2005;41:875-887.   DOI   ScienceOn
8 Griesser M, Hoffmann T, Bellido ML, Rosati C, Fink B, Kurtzer R, Aharoni A, Munoz-Blanco J, Schwab W. Redirection of fl avonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol 2008; 146:1528-1539.   DOI   ScienceOn
9 Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 2007;8:6-21.
10 Morris PC, Kumar A, Bowles DJ, Cuming AC. Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem 1990;190:625-630.   DOI   ScienceOn
11 Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 2006;34(Web Server issue):W459-W462.   DOI   ScienceOn
12 Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res 1999;9:868-877.   DOI
13 Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008;2008:619832.
14 Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005;21:3787-3793.   DOI   ScienceOn
15 Gene Ontology Consortium. The Gene Ontology in 2010: extensions and refi nements. Nucleic Acids Res 2010;38(Database issue):D331-D335.   DOI   ScienceOn
16 Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu JK, Cushman JC, Gollery M, Girke T. Annotating genes of known and unknown function by largescale coexpression analysis. Plant Physiol 2008;147:41-57.   DOI   ScienceOn
17 Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99.
18 Monteiro M, Kevers C, Dommes J, Gaspar T. A specifi c role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Org Cult 2002;68:225-232.   DOI   ScienceOn
19 Parvin S, Kim YJ, Pulla RK, Sathiyamoorthy S, Miah MG, Kim YJ, Wasnik NG, Yang DC. Identification and characterization of spermidine synthase gene from Panax ginseng. Mol Biol Rep 2010;37:923-932.   DOI   ScienceOn
20 Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DCh. Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Genetika 2010;46:932-939.
21 Kevers C, Gal NL, Monteiro M, Dommes J, Gaspar T. Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. J Plant Growth Regul 2000;31:209-214.   DOI   ScienceOn
22 Kim YJ, Kim MK, Shim JS, Pulla RK, Yang DC. Somatic embryogenesis of two new Panax ginseng cultivars Yun- Poong and Chun-Poong. Russian J Plant Physiol 2010;57: 283-289.   DOI   ScienceOn
23 Lee JH, Kim YJ, Jung DY, Shim JS, Kim IH, Yang DC. In vitro induction of tetraploid roots by various pretreatments from anther of Panax ginseng C. A. Meyer. J Ginseng Res 2009;33:65-71.   과학기술학회마을   DOI   ScienceOn
24 Yang DC, Choi KT. Origin and development of singleand poly-embryos formed directly on excised cotyledons of ginseng zygotic embryos. J Ginseng Res 1999;23:74-80.
25 Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-1118.   DOI   ScienceOn
26 Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M. Medicinal flowers. XVII. New dammarane-type triterpene glycosides from fl ower buds of American ginseng, Panax quinquefolium L. Chem Pharm Bull (Tokyo) 2007;55: 1342-1348.   DOI   ScienceOn
27 Nguyen HT, Song GY, Kim JA, Hyun JH, Kang HK, Kim YH. Dammarane-type saponins from the fl ower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 2010;20:309-314.   DOI   ScienceOn
28 Tung NH, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, Lim CM, Hyun JW, Park CJ, Kang HK, et al. Dammarane- type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 2010;58:868-874.   DOI   ScienceOn
29 Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem Rev 2005;4:159-175.   DOI
30 Wang H, Peng D, Xie J. Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med 2009;4:20.   DOI   ScienceOn
31 Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 2010;37:3465-3472.   DOI   ScienceOn
32 Lee SY, Kim YK, Park NI, Kim CS, Lee CY, Park SU. Chemical constituents and biological activities of the berry of Panax ginseng. J Med Plants Res 2010;4:349-353.
33 Asaka I, Ii I, Hirotani M, Asada Y, Furuya T. Production of ginsenoside saponins by culturing ginseng (Panax ginseng) embryogenic tissues in bioreactors. Biotechnol Lett 1993;15:1259-1264.   DOI
34 Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 2007;102:664-668.   DOI   ScienceOn
35 Yan LI, Hong W, He-Chun YE, Guo-Feng LI. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integr Plant Biol 2005;47:769-782.   DOI   ScienceOn
36 Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 2007;282:15812-15822.   DOI   ScienceOn