DOI QR코드

DOI QR Code

Insilico Analysis for Expressed Sequence Tags from Embryogenic Callus and Flower Buds of Panax ginseng C. A. Meyer

  • Sathiyamoorthy, Subramaniyam (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • In, Jun-Gyo (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Byum-Soo (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kwon, Woo-Seang (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Dong-Uk (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Ju-Han (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
  • Received : 2010.08.24
  • Accepted : 2011.01.17
  • Published : 2011.03.29

Abstract

Panax ginseng root has been used as a major source of ginsenoside throughout the history of oriental medicine. In recent years, scientists have found that all of its biomass, including embryogenic calli and flower buds can contain similar active ingredients with pharmacological functions. In this study, transcriptome analyses were used to identify different gene expressions from embryogenic calli and fl ower buds. In total, 6,226 expressed sequence tags (ESTs) were obtained from cDNA libraries of P. ginseng. Insilico analysis was conducted to annotate the putative sequences using gene ontology functional analysis, Kyoto Encyclopedia of Genes and Genomes orthology biochemical analysis, and interproscan protein functional domain analysis. From the obtained results, genes responsible for growth, pathogenicity, pigments, ginsenoside pathway, and development were discussed. Almost 83.3% of the EST sequence was annotated using one-dimensional insilico analysis.

Keywords

References

  1. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  2. Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem Rev 2005;4:159-175. https://doi.org/10.1007/s11101-005-2835-8
  3. Wang H, Peng D, Xie J. Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin Med 2009;4:20. https://doi.org/10.1186/1749-8546-4-20
  4. Lee SY, Kim YK, Park NI, Kim CS, Lee CY, Park SU. Chemical constituents and biological activities of the berry of Panax ginseng. J Med Plants Res 2010;4:349-353.
  5. Asaka I, Ii I, Hirotani M, Asada Y, Furuya T. Production of ginsenoside saponins by culturing ginseng (Panax ginseng) embryogenic tissues in bioreactors. Biotechnol Lett 1993;15:1259-1264. https://doi.org/10.1007/BF00130308
  6. Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 2007;102:664-668. https://doi.org/10.1016/j.foodchem.2006.05.053
  7. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 2010;37:3465-3472. https://doi.org/10.1007/s11033-009-9938-z
  8. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DCh. Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Genetika 2010;46:932-939.
  9. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99.
  10. Kevers C, Gal NL, Monteiro M, Dommes J, Gaspar T. Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. J Plant Growth Regul 2000;31:209-214. https://doi.org/10.1023/A:1006344316683
  11. Kim YJ, Kim MK, Shim JS, Pulla RK, Yang DC. Somatic embryogenesis of two new Panax ginseng cultivars Yun- Poong and Chun-Poong. Russian J Plant Physiol 2010;57: 283-289. https://doi.org/10.1134/S1021443710020172
  12. Lee JH, Kim YJ, Jung DY, Shim JS, Kim IH, Yang DC. In vitro induction of tetraploid roots by various pretreatments from anther of Panax ginseng C. A. Meyer. J Ginseng Res 2009;33:65-71. https://doi.org/10.5142/JGR.2009.33.1.065
  13. Yang DC, Choi KT. Origin and development of singleand poly-embryos formed directly on excised cotyledons of ginseng zygotic embryos. J Ginseng Res 1999;23:74-80.
  14. Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M. Medicinal flowers. XVII. New dammarane-type triterpene glycosides from fl ower buds of American ginseng, Panax quinquefolium L. Chem Pharm Bull (Tokyo) 2007;55: 1342-1348. https://doi.org/10.1248/cpb.55.1342
  15. Nguyen HT, Song GY, Kim JA, Hyun JH, Kang HK, Kim YH. Dammarane-type saponins from the fl ower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 2010;20:309-314. https://doi.org/10.1016/j.bmcl.2009.10.110
  16. Tung NH, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, Lim CM, Hyun JW, Park CJ, Kang HK, et al. Dammarane- type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 2010;58:868-874. https://doi.org/10.1021/jf903334g
  17. Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 2007;8:6-21.
  18. Morris PC, Kumar A, Bowles DJ, Cuming AC. Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem 1990;190:625-630. https://doi.org/10.1111/j.1432-1033.1990.tb15618.x
  19. Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 2006;34(Web Server issue):W459-W462. https://doi.org/10.1093/nar/gkl066
  20. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res 1999;9:868-877. https://doi.org/10.1101/gr.9.9.868
  21. Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008;2008:619832.
  22. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005;21:3787-3793. https://doi.org/10.1093/bioinformatics/bti430
  23. Gene Ontology Consortium. The Gene Ontology in 2010: extensions and refi nements. Nucleic Acids Res 2010;38(Database issue):D331-D335. https://doi.org/10.1093/nar/gkp1018
  24. Horan K, Jang C, Bailey-Serres J, Mittler R, Shelton C, Harper JF, Zhu JK, Cushman JC, Gollery M, Girke T. Annotating genes of known and unknown function by largescale coexpression analysis. Plant Physiol 2008;147:41-57. https://doi.org/10.1104/pp.108.117366
  25. Monteiro M, Kevers C, Dommes J, Gaspar T. A specifi c role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Org Cult 2002;68:225-232. https://doi.org/10.1023/A:1013950729576
  26. Parvin S, Kim YJ, Pulla RK, Sathiyamoorthy S, Miah MG, Kim YJ, Wasnik NG, Yang DC. Identification and characterization of spermidine synthase gene from Panax ginseng. Mol Biol Rep 2010;37:923-932. https://doi.org/10.1007/s11033-009-9725-x
  27. Dharmawardhana DP, Ellis BE, Carlson JE. cDNA cloning and heterologous expression of coniferin beta-glucosidase. Plant Mol Biol 1999;40:365-372. https://doi.org/10.1023/A:1006226931512
  28. Pulla RK, Shim JS, Kim YJ, Jeong DY, In JG, Lee BS, Yang DC. Molecular cloning and characterization of the gene encoding cinnamyl alcohol dehydrogenase in Panax ginseng C. A. Meyer. Korean J Med Crop Sci 2009;17:266-272.
  29. Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M. Water defi cits affect caffeate O-methyltransferase, lignifi cation, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 2005;137:949-960. https://doi.org/10.1104/pp.104.050815
  30. Lu S, Zhou Y, Li L, Chiang VL. Distinct roles of cinnamate 4-hydroxylase genes in Populus. Plant Cell Physiol 2006;47:905-914. https://doi.org/10.1093/pcp/pcj063
  31. Kim YJ, Lee JH, Jung DY, Sathiyaraj G, Shim JS, In JG, Yang DC. Isolation and characterization of pathogenesisrelated protein 5 (PgPR5) gene from Panax ginseng. Plant Pathol J 2009;25:400-407. https://doi.org/10.5423/PPJ.2009.25.4.400
  32. Pulla RK, Lee OR, In JG, Kim YJ, Senthil K, Yang DC. Expression and functional characterization of pathogenesisrelated protein family 10 gene, PgPR10-2, from Panax ginseng C. A. Meyer. Physiol Mol Plant Pathol 2010;74:323-329. https://doi.org/10.1016/j.pmpp.2010.05.001
  33. Achnine L, Huhman DV, Farag MA, Sumner LW, Blount JW, Dixon RA. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 2005;41:875-887. https://doi.org/10.1111/j.1365-313X.2005.02344.x
  34. Griesser M, Hoffmann T, Bellido ML, Rosati C, Fink B, Kurtzer R, Aharoni A, Munoz-Blanco J, Schwab W. Redirection of fl avonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol 2008; 146:1528-1539. https://doi.org/10.1104/pp.107.114280
  35. Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 2007;282:15812-15822. https://doi.org/10.1074/jbc.M700638200
  36. Yan LI, Hong W, He-Chun YE, Guo-Feng LI. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Integr Plant Biol 2005;47:769-782. https://doi.org/10.1111/j.1744-7909.2005.00111.x

Cited by

  1. Diversity and evolution of major Panax species revealed by scanning the entire chloroplast intergenic spacer sequences vol.60, pp.2, 2013, https://doi.org/10.1007/s10722-012-9844-4
  2. Enzymatic Formation of Novel Ginsenoside Rg1-α-Glucosides by Rat Intestinal Homogenates vol.177, pp.8, 2015, https://doi.org/10.1007/s12010-015-1847-0
  3. Cytological characterization of anther development in Panax ginseng Meyer vol.253, pp.4, 2016, https://doi.org/10.1007/s00709-015-0869-3
  4. Molecular characterization and expression analysis of pathogenesis related protein 6 from Panax ginseng vol.53, pp.11, 2017, https://doi.org/10.1134/S1022795417110060
  5. Recent Methodology in Ginseng Analysis vol.36, pp.2, 2011, https://doi.org/10.5142/jgr.2012.36.2.119
  6. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer) vol.37, pp.2, 2011, https://doi.org/10.5142/jgr.2013.37.227
  7. Computer-aided identification of EGFR tyrosine kinase inhibitors using ginsenosides from Panax ginseng vol.43, pp.6, 2011, https://doi.org/10.1016/j.compbiomed.2013.02.020
  8. Till 2018: a survey of biomolecular sequences in genus Panax vol.44, pp.1, 2011, https://doi.org/10.1016/j.jgr.2019.06.004