• Title/Summary/Keyword: separation property

Search Result 276, Processing Time 0.024 seconds

Bacterial Cellulose Membrane for Wastewater Treatment: A Review (폐수 처리를 위한 박테리아 셀룰로오스 막: 리뷰)

  • Jang, Eun Jo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.384-392
    • /
    • 2021
  • Growing pollution due to industrialization leads to difficulties in survival of mankind. Generation of clean water from wastewater by membrane separation process is emerging cost efficient technology. Membrane prepared from renewable resources are in lots of demand to reduce burden on synthetic polymers which is one of the source of environmental pollution. Bacterial cellulose (BC) is very pure and distinct form of cellulose nanofibrils (CNF). Nanopapers prepared from CNF are used ad ultrafiltration (UF) and nanofiltration (NF) membrane for different applications. High crystallinity of BC gives rise to excellent mechanical property, an essential criterion for wastewater treatment membrane. In this review, BC based membrane for application in dye, oil, heavy metal and chemical removal from wastewater is discussed.

Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency (농촌 폐비닐 활용률 제고를 위한 수열합성 생성물인 에코 파우더(Eco-powder)의 기초물성 평가)

  • Sun-Mi Choi;Min-Chul Lee;Jin-Man Kim;Young-Gon Son;Nam-Ho Kim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • This study aimed to improve utilization of the Class C vinyl waste generated in rural areas based on a preliminary investigation on the use of eco-powder, generated through pyrolysis, as a raw material for plastic. The efficiency of pre-processing treatments in controlling ash content of the generated eco-powder and its effect on the basic properties of manufactured plastic were evaluated. The basic properties included ash content of the compressed eco-powder at different levels of ash content, impact strength, flexural strength, and tensile strength. The experimental results confirmed that pre-processing improved the separation efficiency of soil particles and vinyl waste through physical impact. The eco-powder with ash content of less than or equal to 26% was found to satisfy the target performance during impact strength, flexural strength, and tensile strength evaluation. Thus, it was confirmed that the Class C vinyl waste, having low utilization and recovery rates, could be effectively utilized as a plastic raw material after optimum thermal treatment and physical processing using the eco-powder.

A Study on Improvement of Discharge Obstruction Prevention Standard for Sprinkler Head on NFSC 103 (스프링클러설비 소화성능 향상을 위한 NFSC 103 살수장애 방지기준 개선 방안에 관한 연구)

  • Kim, Sunghyun;Lee, Sungsu
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.237-247
    • /
    • 2020
  • Purpose: This study aims to draw the problems and improvements of NFSC 103 sprinkler head discharge obstruction prevention standard to increase the fire extinguishing performance of sprinkler system in order to contribute to the protection of people's lives and property in the event of a fire. Method: NFSC 103 was compared to NFPA 13 which is the latest 2019 version in U.S in terms of sprinkler head discharge obstruction prevention. Results: This study found that NFSC 103 doesn't define even the basic concept of sprinkler discharge obstruction. And NFSC 103 doesn't have detailed standard for side wall sprinkler head discharge obstruction prevention as well as the "height" criteria of the "three times" separation rule. Conclusion: NFSC 103 needs a lot of supplements and improvements such as the addition of definition for water discharge obstructions, the adoption of sidewall sprinkler heads standard for preventing water discharge obstructions and the additional establishment of the "three times rule" considering the "height" of obstacles to promote the advance of fire safety standard equal or above fire fighting advanced country and increase the reliability for the suppression performance of sprinkler system.

Evaluation of Reliability of Strain Gauge Measurements for Geosynthetics (토목섬유 보강재에 적용한 스트레인게이지 실측값의 신뢰성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Li, Zhuang;Kim, Uk-Gie
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.87-96
    • /
    • 2015
  • Geosynthetics are widely used in different ways such as reinforcement of structures in road, railway, harbor and dam engineering, drainage, separation and erosion prevention. They are especially applied to reinforced retaining wall and slope or ground reinforcement. Recently, geosynthetics reinforced pile supported (GRPS) embankment was developed to improve stability and construability of embankments in railway engineering. Extension strains are usually measured by strain gauges adhered to geosynthetics to evaluate the stability of geosynthetics. However, the measurements are influenced by manufacturing method and stiffness of geosynthetics and also adherence of strain gauge. In this study, wide-width tensile strength tests were performed on three types of geosynthetics including geogrid, woven geotextile and non-woven geotextile. During the test, strains of geosynthetics were measured by both video extensometer and strain gauges adhered to the geosynthetics and the measured results were compared. Results show that the measured results by strain gauges have high reliability in case of large stiffness geosythetics like geogrid and woven geotextile, whereas they have very low reliability for small stiffness geosythetics like non-woven geotextile.

The Development of Iodine-123 with MC-50 Cyclotron (MC-50 싸이클로트론을 이용한 $^{123}I$ 제법 연구)

  • Suh, Yong-Sup;Yang, Seung-Tae;Chun, Kown-Soo;Lee, Jong-Doo;Han, Hyon-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.2
    • /
    • pp.286-293
    • /
    • 1991
  • $^{123}I$, which is applied for the thyroid and other in vivo kinetic study, has a special role in life sciences. The 159 KeV $\gamma-ray$ from $^{123}I$ is almost ideally appropriate for the current imaging instrumentation. Its decay mode (electron capture) and short half-life (13.3 hr) reduced the burden of radiation dose to the patients, and its chemical property makes it easy to synthesize the labelling compounds. In this experiment, the production of $^{123}I$ via the nuclear reaction $^{124}Te(p,2n)^{123}I$ with 28 MeV protons was sutdied. $TeO_2$ is used as a target material, because it has good physical properties. The target was prepared with $TeO_2$ powder and was molten into a ellipsoidal cavity (a=14 mm, b=10 mm, $270.8mg/cm^2$ thick) of pure platinum. The irradiation was carried out in the external proton beam with incident energies range from 28 MeV to 22 MeV, and current was $30{\mu}A$. The loss of $TeO_2$ target was significantly reduced by using $4\pi-cooling$ system in irradiation. The dry distillation method was adopted for the separation of $^{123}I$ from irradiated target, and when it was kept 5 minutes at $780^{\circ}C$, its result was quantitative. The loss of the target material $(TeO_2)$ was below 0.2% for each production run and $^{123}I$ from the dry distillation apparatus was captured with 0.01 N NaOH in $Na^{123}I$ form, then the pH of the solution was adjusted to $7.5\sim9.0$ with HC1/NaOH. The $Na^{123}I$ solution was passed through $0.2{\mu}m$ membrane filter, and sterilized under high pressure and temperature for 30 minutes. The production of $^{123}I$ is acceptable for clinical application based on the quality of USP XXI.

  • PDF

A Study on the Synthesis of Carboxymethyl Chitin and Separation of Alkali-Earth Metal ions by Adsorption (Carboxymethyl Chitin의 합성 및 알칼리 토금속 이온의 흡착분리에 관한 연구)

  • Choi, Kyu-Suk;Chang, Byung-Kwon;Kim, Chong-Hee;Kim, Yong-Moon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.270-278
    • /
    • 1991
  • Carboxymethyl chitin(CM-chitin) was prepared by the reaction of alkali chitin with monochloroacetic acid in isopropyl alcohol. According to the pH variation, the adsorptivity of this chelating polymer to the alkali-earth metal ions such as $Ca^{2+},\;Mg^{2+}$, $Sr^{2+}$, $Ba^{2+}$ ions was determined by batch method. The adsorption tendency of this chelating polymer to most metal ions was increased with the increase of pH. The highest degree of adsorption was observed toward $Ca^{2+}$ ion among the alkali-earth metal ions. The selectivity adsorption property toward $Ca^{2+}$ ion was examined in the solution of $Ca^{2+}$ and $Mg^{2+}$ ions, and it was observed that CM-chitin showed excellent selectivity to $Ca^{2+}$ ion than $Mg^{2+}$ ion. $Mg^{2+}$ ion bound to CM-chitin molecule in the presence of $Ca^{2+}$ ion owing to low equilibrium constant. In the adsorption experiment of $Ca^{2+}$ and $Mg^{2+}$ ions to the CM-chitin under coexistence of $Na^+$ and $K^+$ ions, it observed that adsorptivity of only $Ca^{2+}$ ions was not affected by these monovalent cations.

  • PDF

The Characteristics of Particle Size in Natural Mineral Pigment for Azurite Raw Material (남동광석(Azurite) 원료 천연 광물 안료의 입도분포 특징)

  • Go, In Hee;Jeong, Hye Young;Park, Ju Hyeon;Jeong, Sir Lin;Jo, A Hyeon
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2015
  • This study were conducted the particle-size analysis on 57 blue pigments to understand the step distribution characteristics of blue pigments made out of Azurite by using Malvern's Mastersizer 2000. As the result, most of the conventional blue pigments in Korea, Japan, and Chinese showed good granularity step separation except for few, and the smaller the particle, the more the Span value increased and the wider the granularity distribution range. On the basis of Friedman and Sanders's Grain size, most of the pigments were sand size to silt size. 72.2% of B-100 was clay size and 2.5% of A-14 was gravel size. Even the same components can differ by the grain size directly affecting the important property such as color formation, oil absorption, specific gravity, usability, etc. so the information about the granularity distribution would be used for basic data to deal with natural pigments.

Lipase-Catalyzed Reactions for Fats and Oils in Non-Polar Solvent (유기용매 내에서의 유지의 리파제 촉매반응)

  • Daeseok Han;Kwon, Dae-Young;Rhee, Joon-Shick
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.250-258
    • /
    • 1988
  • Lipases are well known as the enzymes which catalyze the hydrolysis of ester bonds combining aliphatic chains and glycerol on mono-, di- and triglycerides. Their reactions are characterized by be-ing heterogeneous and catalyzing the water-insoluble substrates. This property has been one of the Hurdles which delayed the application of lipases in fats and oils industry, However, with the development of biological reaction system of which organic solvent is introduced in part or whole as the reaction media, enzymatic manipulation of fats and oils is attracting increasing attention from the academic and industrial sectors. Trials in two-phase system and reversed micellar system to produce fatty acids through enzymatic hydrolysis of triglycerides preyed to be efficient in respect to volumetric productivity, fat hydrolysis rate, product separation, etc. In organic solvent system lipases have been found to have the ability to catalyze aminolysis, transesterification, esterification, thiotransesterification and oximolysis that are virtually impossible to catalyze in water. The organic solvent system is being extensively used in interesterifying glycerides to produce a fat with the modified physical and chemical nature.

  • PDF

Questionnaire Survey on the Proposed Amendments to the Corporate Tax Law in Alignment with the Full Adoption of the International Financial Reporting Standards in Korea (국제회계기준 도입에 따른 법인세법 개정방향 -재정부 발표 개정안에 대한 세무사 대상 설문조사-)

  • Jang, Ji-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.334-350
    • /
    • 2010
  • This study aims at investigating the possible effects on the tax accounting practices stemming from adopting the IFRS in financial reporting process. It also seeks for policy implications to help alleviate practical conflicts likely to arise from the inconsistencies between the existing tax law and the tax related IFRS provisions. The results of the survey analysis are summarized as follows: firstly, majority opinion is opposed to the fair value based revaluation of property assets as well as the application of immediate recognition of foreign currency translation gains/losses. It favors the existing provision on asset securitization which adopts sales transaction view. Secondly, most of the respondents oppose the proposed amendments which allows dual classification of lease contracts on the ground. Third, functional currency appears acceptable on a conceptual level, even though a deep concern is expressed regarding the practical feasibility of computing taxable income using financial statements translated on the basis of functional currency on a practical viewpoint. Fourth, many respondents support the existing convention of recognizing depreciation expenses for taxation purposes and are in favor of the separation of accounting and tax books on a long-term basis. Fifth, the majority opinion approves the maintenance of existing tax reconciliation system and the recognition of expenses related with the doubtful accounts on reporting basis. Finally, a concern is raised with regard to the added burden of practical job loads needed to comply with the proposed amendments.

Architecture and Transport Properties of Membranes out of Graphene (그래핀에 기초한 막의 구조와 물질 전달 성질 개관)

  • Buchheim, Jakob;Wyss, Roman M.;Kim, Chang-Min;Deng, Mengmeng;Park, Hyung Gyu
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.239-252
    • /
    • 2016
  • Two-dimensional materials offer unique characteristics for membrane applications to water technology. With its atomic thickness, availability and stackability, graphene in particular is attracting attention in the research and industrial communities. Here, we present a brief overview of the recent research activities in this rising topic with bringing two membrane architecture into focus. Pristine graphene in single- and polycrystallinity poses a unique diffusion barrier property for most of chemical species at broad ambient conditions. If well designed and controlled, physical and chemical perforation can turn this barrier layer to a thinnest feasible membrane that permits ultimate permeation at given pore sizes. For subcontinuum pores, both molecular dynamics simulations and experiments predict potential salt rejection to envisage a seawater desalination application. Another novel membrane architecture is a stack of individual layers of 2D materials. When graphene-based platelets are chemically modified and stacked, the interplanar spacing forms a narrow transport pathway capable of separation of solvated ions from pure water. Bearing unbeknownst permeance and selectivity, both membrane architecture - ultrathin porous graphene and stacked platelets - offer a promising prospect for new extraordinary membranes for water technology applications.