• Title/Summary/Keyword: separation of mixture

Search Result 639, Processing Time 0.027 seconds

Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation (고효율 크기 가변적 입자 분리를 위한 통합 하이브리드 소자)

  • Choo, Seung Hee;Park, Jion;Kim, Tae Eun;Gang, Tae Gyeoung;An, Jun Seok;Oh, Gayeong;Kim, Yeojin;Park, Kyu Been;Park, Chaewon;Lee, Minjeong;Lim, Hyunjung;Nam, Jeonghun
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.170-176
    • /
    • 2022
  • Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separation using acoustophoresis to attain high efficiency and separation tunability. For particle pre-alignment in a viscoelastic fluid, the flow rate higher than 10 μl/min was required. Surface acoustic wave-based lateral migration of particles with different sizes (13 and 27 ㎛) was examined at various applied voltages and flow rate conditions. Therefore, the flow rate of 100 μl/min and the applied voltage of 20 Vpp can be used for size-based particle separation.

A Study on the Flow Characteristics of Oil-Water Separator for Marine Ship CFD (CFD에 의한 선박용 유수분리기의 유동특성에 관한 연구)

  • Kim, Byeong Jun;Kim, Sung Yoon;Roh, Chun Su;Lee, Young Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.48-53
    • /
    • 2016
  • The centrifugal separator which uses gravity separation method for oil-water separation, rotating at high-speed, is one of the most commonly used device for controlling the amount of the oil in waste water collected in bilge. The IMO (International Maritime Organization) has set regulations, also known as MARPOL 73/78, for the prevention of marine pollution. In addition, DET NORSKE VERITAS (DNV) has set standards regarding the assignment of Environmental Class Notation, CLEAN or CLEAN DESIGN, of ships. One of the requirements for classification is that in addition to conforming to MARPOL 73/78, more stringent measures must be taken as well. One of these measures is to limit the oil concentration in bilge water to less than 5ppm. So in this study, an Oil-Water Separator (OWS) is used together with multiple separating plates as a filtration system to be used as an oil-water separation device. The OWS operates using centrifugal separation in which the mixture is separated by centrifugal forces. The main purpose of this paper is to present the OWS separation efficiency according to the rotation speed, mass-flow rate, the angle and the number of stacked layers of the laminated plate using Computational Fluid Dynamics (CFD). Improvements to the device will be investigated from these results.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

Separation of Antioxidants and Glucose from Grape Skin Extract Using Polyethylene Glycol and Sodium Citrate (폴리에틸렌글리콜과 구연산 나트륨을 이용하여 포도껍질 추출물에서 항산화물질과 포도당 분리)

  • Eun Min Shin;Yeong Eun Joo;Su Min Jung;Jaechan Suh;Chang-Joon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2023
  • The purpose of this study is to develop a method for separating antioxidants and sugars from grape skin extract. The extract was first mixed with a variety of organic solvents to investigate whether the separation was feasible. When employing acetone, ethanol, dimethylsulfoxide, or dimethylformamide, the organic solvent-extract combination formed a single phase. However, when benzene, ethyl acetate, or n-hexane was added to the extract, the mixture separated into an organic and an aqueous phase and the pigments remained in the aqueous phase. On the other hand, when polyethylene glycol-2,000 (PEG-2000) and sodium citrate were added to the extract, the mixture was separated into three layers, with the majority of the flavonoids migrating to the top layer and 53% of the extract's glucose migrating to the bottom layer. The top layer had significant antioxidant activity, whereas the bottom layer showed no antioxidant activity. The glucose recovery in the bottom layer increased as the molecular weight of PEG increased and the highest recovery (67%) was observed when PEG-8,000 was added. The highest flavonoid separation was observed with PEG-2,000, followed by PEG-8,000 and PEG-400. The flavonoid separation when PEG-2,000 was added resulted in a flavonoid recovery of 48% and 0.2% from the top and bottom layers, respectively. Examining the effect of the separated solution using the agar disc diffusion method on yeast cell growth confirmed that the addition of the extract, the top, and the bottom layer did not inhibit cell growth.

Preparation of Zeolite-Filled PDMS Membranes and Its Properties for Organic Vapor Separation

  • Kim, Min-Joung;Youm, Kyung-Ho
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • In order to improve organic vapor separation efficiency of polydimethylsiloxane (PDMS) membrane, various zeolites (zeolite 4A, zeolite 13X and natural zeolite) were introduced into a thin PDMS film. The measurements of permeability and selectivity of zeolite-filled PDMS membranes were carried out with a CO$_2$gas and a CO$_2$gas/acetic acid vapor mixture, respectively. The CO$_2$permeability of zeolite-filled membranes decreased with increasing zeolite content and then recovered up to 30 wt% content. The effect of zeolite type on the improvement of CO$_2$permeability was found to be in the order of zeolite 13X > natural zeolite > 4A. The CO$_2$selectivity of zeolite-filled membranes was enhanced up to 9 times compared with the selectivity of a pure (unfilled) PDMS membrane. The effect of zeolite type on the improvement of CO$_2$selectivity was found to be in the order of natural zeolite > zeolite 13X > zeolite 4A.

  • PDF

Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis (단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향)

  • Hong Seung-hyun;Jung Se-hun;Kim Young-jin;Choi Jae-bong;Baik Seunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

A Study on the Manufacturing of Porous Membrane for Separation of Gas Mixture by Al Anodizing Method (Al장극산화법에 의한 반휴분이용 다공성 격영의 제조에 관한 연구)

  • 윤은열;라경용
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.2
    • /
    • pp.69-76
    • /
    • 1982
  • With a view to manufacturing membranes for separation of gas mixtures, Al foils were anodized in a 2% oxalic-acid electrolyte at 40V and 80V. When anodizing was completed and Barrier layer existed at the extreme back site of the foil, the anodized foil was made to react with only electrolyte, with switching off the electric power. When the size and density of pores were changed through voltage change, the membr-anes did not show large difference in the permeability. Reacting with electrolyte, the existing Barrier layer turns into porous layer. During this process, several small pores grow from one relatively large pore, getting to the back site. The number and size of the small pores getting to the back surface increase as time passing. This change of Barrier layer into porous layer is thought to be directly related to the permeability change of the membranes. The selectivity of an anodized Al membrane was not related to the voltage change, and was high, being similar to the theoretical selctivity of metallic membranes, according to my observation.

  • PDF

The measurement of capacitance of W/O type emulsified fuel using by capacitance sensor (정전용량센서를 이용한 W/O형 유화연료의 정전용량 측정)

  • Cho, Seong-Cheol;Oh, Yang-Hwan;Im, Seok-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.377-382
    • /
    • 2007
  • We designed capacitance sensor in order to examine characteristics of W/O type emulsified fuel, so it concluded the following conclusions. The capacitance value of emulsified fuel, using with capacitance sensor, increases as water content increases due to the coalescence. When surfactant increases, the capacitance value decreases, the condition of W/O type emulsified fuel was maintained stably. There was revealed the capacitance value difference of W/O type emulsified fuel in in according to water content. We checked the phase separation of emulsified fuel with the capacitance value difference. The surfactant(HLB=5.4) had better stable condition than surfactant(HLB=4.3). Also, we confirmed that two mixture surfactants were better than one surfactant.

Separation of Rare Earth Elements in Monazite Sand by Anion Exchange Resin (음이온교환수지에 의한 모나자이트중 희토류원소의 분리)

  • Ki-Won Cha;Joung-Hae Lee;Young-Gu Ha
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.239-244
    • /
    • 1980
  • An anion exchange method for separating the individual rare earth elements in monazite into enriched fractions has been developed. The complexed rare earth ions with EDTA at pH 8.4 pass through the anion resin bed. The absorption order of the complexed ions was in accord with that of the stability constants of the complexes. The elution of a mixture of all the rare earths through an ion-exchange bed with an ammonia-buffered solution of EDTA indicated that this chelating agent is as effective for separating the light rare earths. The separation results of each ion obtained from their elution fractions are 55% to 98%.

  • PDF

Pervaporation separation of water/ethanol mixture through tubular zeolite membranes

  • Matsui, Shigetoshi;Ikeda, Madoka;Shinma, Shuji;Arano, Manabu;Mizoguchi, Kensaku;Ikeda, Shiro;Sawasaki, Toshiaki;Nakane, Takashi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.98-101
    • /
    • 2004
  • Utilization of biomass resources has considerable contribution to the reduction of carbon dioxide emission. Ethanol is one of the biomass products and is used as an additive to gasoline in several countries. Conventional process to produce ethanol involves energy-intensive azeotropic distillation. Pervaporation (PV) or vapor permeation (VP) is considered to be an alternative separation process to the conventional process.(omitted)

  • PDF