학 술 논 문

고효율 크기 가변적 입자 분리를 위한 통합 하이브리드 소자

추승희^{!+}· 박지온²⁺· 김태은³· 강태경²· 안준석²· 오가영²· 김여진⁴· 박규빈⁴· 박채원⁴· 이민정⁴· 임현정^{3*}· 남정훈^{2,3*}

¹인천대학교 생명공학부 나노바이오전공, ²인천재능대학교 송도바이오과 ³인천재능대학교 인공지능바이오연구소, ⁴인천재능대학교 송도바이오생명과

Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation

Seung Hee Choo^{1‡}, Jion Park^{2‡}, Tae Eun Kim³, Tae Gyeoung Gang², Jun Seok An², Gayeong Oh², Yeojin Kim⁴, Kyu Been Park⁴, Chaewon Park⁴, Minjeong Lee⁴, Hyunjung Lim^{3*} and Jeonghun Nam^{2,3*}

> ¹College of Life Sciences and Bio engineering, Incheon National University, Korea ²Department of Song-do Bio Engineering, Incheon Jaeneung University, Korea ³Artificial Intelligent-Bio Research Center, Incheon Jaeneung University, Korea ⁴Department of Song-Do Bio Life Engineering, Incheon Jaeneung University, Korea (Manuscript received 7 June 2022; revised 13 June 2022; accepted 13 June 2022)

170

Abstract: Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separation using acoustophoresis to attain high efficiency and separation tunability. For particle pre-alignment in a viscoelastic fluid, the flow rate higher than 10 μ l/min was required. Surface acoustic wave-based lateral migration of particles with different sizes (13 and 27 μ m) was examined at various applied voltages and flow rate conditions. Therefore, the flow rate of 100 μ l/min and the applied voltage of 20 V_{pp} can be used for size-based particle separation.

Key words: Hybrid device, Viscoelastic focusing, Surface acoustic wave, Separation

I.서 론

다양한 세포가 혼합된 생체 시료로부터 대상 세포를 분리 하는 것은 임상 진단 및 생물학, 화학 연구분야의 분석과정 에서 필수적으로 요구되는 과정이다[1,2]. 기존의 세포 분리는 멤브레인 기반 여과, 원심분리, 면역표지 기반 형광 활성 세 포 분리법에 의존하였으나, 이는 멤브레인 막힘, 긴 시간 소요, 세포의 물리적 손상 가능성, 복잡한 표지 방법 등의 한계점 이 존재한다.

최근 미세유체역학 기술의 발전에 따라 미세유체역학 기 반 세포 분리 기술이 주목을 받고 있다[3,4]. 미세유체역학 기반의 세포 분리는 적은 시료 및 시약의 소모, 빠른 처리 시간, 비용의 효율성, 높은 민감도를 장점으로 기존 세포 분 리법이 가졌던 한계점을 해결할 수 있다. 미세유체역학 기 반의 세포 분리는 외력의 사용 유무에 따라 능동적 방법 및 수동적 방법으로 나눌 수 있다. 능동적 방법은 세포 및 입 자의 유동을 제어하기 위하여 전기력[5,6], 자기력[7,8], 광 학[9,10], 탄성력[11-14] 등의 외력을 차용하는 방식이다. 한 편, 수동적 방법은 외력의 사용 없이 채널의 기하학적 구조

^{*}Corresponding Author : Hyunjung Lim / Jeonghun Nam Department of Song-do Bio Engineering, Incheon Jaeneung University, Incheon 21987, Korea

Tel: +82-32-890-7515

E-mail: hyunjunglim.email@gmail.com / jhnam77@gmail.com $^{\rm t}{\rm Contributed}$ equally to this work.

이 논문은(는) 2022년도 정부(과학기술정보통신부)의 재원으로 한국 연구재단의 지원을 받아 수행된 연구임(No. 2020R1A2C1014460).

및 유체 역학적인 힘을 이용하는 방식을 의미한다[15-20]. 최근 점탄성 유체 기반 비뉴턴성 미세유체역학 기술이 주 목을 받고 있으며, 이는 유체 자체의 일차수직응력차(N₁)의 불균일한 분포에 의한 것이다[21-23]. 점탄성 유체 내에 부 유된 세포 및 입자는 유동 중 탄성력의 영향을 받아 단순한 일자형 채널 내에서도 측면 방향으로 이동이 가능하다. 이 러한 현상을 이용하여 점탄성 유체 기반 미세유체역학 기술은 세포의 포커싱[24-28] 및 크기 기반 세포 분리[29-35] 등에 다양하게 활용되고 있다. 그러나 점탄성 유체를 기반으로 한 세포 분리의 활용 가능한 크기 범위는 미세유동채널의 치수 (너비 및 높이)에 의존한다는 한계점이 존재한다.

한편, 외력을 이용하는 능동적 세포 분리 기술 중에서 탄 성파를 이용하는 기술이 비침습성, 낮은 소비전력, 다른 미 세유체플랫폼과의 쉬운 통합 및 빠른 입자/유체 조작의 장 점으로 널리 활용되고 있다[36]. 표면탄성파에 의해 작용하는 힘은 입자의 크기에 따라 다른 크기로 작용하므로, 이를 기 반으로 하여 표면탄성파 기반 세포의 크기, 밀도에 따른 입 자/세포의 분리 연구가 다양하게 이루어졌다[11,14,37]. 그 러나, 표면탄성파 기반 분리 기술의 장점에도 불구하고 분 리 효율의 향상을 위하여 분리과정 이전에 도움유체(sheath fluid)를 사용하여 모든 세포의 위치를 초기화시켜야 한다는 한계점이 존재한다. 도움유체의 사용은 병렬채널 구조를 이 용한 다중 처리를 방해하고, 별도의 유체 주입용 펌프 시스 템이 필요하며, 시료의 농도를 희석시킬 수 있다.

최근, 분리효율의 향상을 위하여 관성력과 자성력, 점탄성 력과 자성력, 관성력과 탄성력 등 서로 다른 두 가지 이상의 기 술을 조합하여 활용하는 연구가 이루어지고 있다[38-41]. 본 연구에서는 일자형 직사각 단면 채널에서의 점탄성 유체 기 반 입자 포커싱과 탄성력 기반의 크기별 입자 분리를 통합 한 하이브리드 플랫폼을 제안하였고, 이를 통해 높은 분리 효율과 분리 대상의 가변성을 얻을 수 있음을 확인하였다. 크기 기반 입자 분리의 최적 조건을 결정하기 위하여 유동 율별, 표면탄성파 발생용 인가 전압별 입자의 측면 이동량 을 평가하였다. 해당 결과를 기반으로 개발된 하이브리드 소 자가 고효율, 크기 가변적 세포 분리를 위한 도구로서 유용 하게 활용될 것으로 예상한다.

Ⅱ. 연구 방법

1. 작동 원리 (Working principle)

그림 1(a)는 하이브리드 소자의 개략도 및 작동 원리를 보 여준다. 개략도에서 볼 수 있듯이, 하이브리드 소자는 두 개 의 연속된 단계로 구성되어 있다. 첫번째 단계는 점탄성 유 체 기반 입자 포커싱을 위한 일자형 직사각 단면의 미세유 동채널이며, 두번째 단계는 표면탄성파 기반 크기별 입자 분 리를 위한 전도성 액체로 채워진 전극 채널과 일자형 미세 유동채널로 이루어져 있다[42,43]. 초기 시료 혼합물은 서 로 다른 크기의 입자 혼합물이 점탄성 유체에 부유된 상태 로 이용되었으며, 해당 점탄성 유체는 높은 탄성도를 가졌 지만 점도는 낮은 유체로 선정되어 소자의 수율을 높일 수 있도록 하였다[27].

소자의 입구를 통해 주입된 시료는 다양한 크기의 입자가

그림 1. (a) 고효율, 크기 가변적 세포 분리를 위한 하이브리드 소자의 개략도. 점탄성 유체 기반 입자 포커싱을 위한 첫번째 단계 및 표면탄 성파 기반 크기별 입자 분리를 위한 두번째 단계로 구성되었다. (b) A-A' 단면에서 관찰 가능한 전도성 액체가 채워진 전극채널로부터 발생 된 표면탄성파의 전달 (c) 전도성 액체로 채워진 전극 채널의 현미경 관찰 이미지

Fig. 1. (a) Schematic of integrated hybrid device for high-efficiency, size-tunable particle separation. It consists of the 1st stage for viscoelastic particle focusing and 2nd stage for size-based particle separation using surface acoustic wave. (b) Propagation of SAWs generated from the conductive liquid-based electrode channels. (c) Microscopic image of electrode channels filled with conductive liquid metal

랜덤하게 분포한 형태로 유동한다. 점탄성 유체 내에서 유 동하는 입자는 관성력과 탄성력의 영향을 동시에 받는다. 탄 성력(elastic force, F_E)은 불균일한 일차수직응력차(N_1)에 의해 미세유동채널의 측면 방향으로 작용하는 힘으로서, 식 (1)과 같이 입자 크기의 영향을 받는다.

$$F_e \sim a^3 \frac{\partial N_1}{\partial x} \sim \lambda_{rel} (a/W)^3 Q^3$$
⁽¹⁾

여기에서, *a*, *x*, *λ_{rel}, W*, *Q*는 입자의 지름, 측면 이동량, 완 화시간, 미세유동채널의 너비, 유동율을 나타낸다. 부유된 입자 중 폐색율(blockage ratio, *β*=*a*/*W*, *a*는 입자 지름, *W*는 채널 너비)이 0.1 이상인 입자는 유동 중 탄성력의 영향을 받아 채널의 가운데로 포커싱된다. 첫번째 단계의 미세유동 채널은 사용 대상 입자의 폐색율이 모두 0.1 이상이 되도록 설계하였으므로, 모든 입자의 위치는 미세유동채널의 가운 데 평면으로 초기화된다. 한편, 폐색율이 0.1 미만인 입자의 경우에는 탄성력의 영향을 받는 것은 동일하므로 채널의 가 운데 방향으로 측면 이동하지만, 상대적으로 작은 크기로 인 하여 채널의 가운데에 포커싱되지 않고 넓은 영역에 분포하 게 된다[34]. 이 경우에는 입자의 위치 초기화가 완전히 이 루어지지 않았으므로, 두번째 단계에서의 분리효율은 저하 될 것으로 예상 가능하다.

점탄성 유체 내에서 가해지는 관성력과 탄성력은 채널의 형상 및 치수, 입자의 크기, 사용 유체의 종류 및 농도, 유 동율 등의 영향을 복합적으로 받는다. 따라서 점탄성 유체의 유 동 특성을 알아보기 위해서는 레이놀즈 수(Reynolds number, *Re*), 와이젠버그 수(Weissenberg number, *Wi*), 탄성 수 (Elasticity number, *El*)와 같은 무차원수를 차용해야 한 다. 레이놀즈 수($Re = \frac{\rho V_m D_h}{\eta_c}$)는 관성력과 점성력의 비를 나 타내는 것이고, 반면 와이젠버그수($Wi = \lambda_{rel}\dot{\gamma}_c$)는 탄성력과 점성력의 비를 나타내는 것이다. 이 때, ρ , V_m , D_h , η_c , λ_{rel} 는 용 액의 밀도, 평균유속, 입자의 수력학적 지름, 용액의 특성점도, 용액의 완화시간, 전단율을 의미한다. 탄성수($El = \frac{Wi}{Re}$)는 관성 과 탄성의 비율을 의미하는 것으로, 점탄성 유체 내에서의 입 자의 유동특성을 평가할 수 있는 지표가 된다.

이후 두번째 단계에서는 압전기판(piezoelectric substrate)에 접합되어 전도성 액체가 채워진 전극채널에 무선 주파수 (radio frequency, RF) 신호를 가하면 그림 1(b)와 같이 압 전기판의 표면을 따라 전파되는 표면탄성파(surface acoustic wave, SAW)가 발생된다. 표면탄성파로 인해 작용하는 음 향방사력(acoustic radiation force, F_R)은 식 (2)와 같이 표 현된다[44,45].

$$F_{R} = 2\pi \rho_{l} |\mathcal{A}|^{2} (kR_{p}) \frac{69 + 2(1 - \lambda_{p})^{2}}{9(2 + \lambda_{p})^{2}}$$
(2)

$$\lambda_{\rho} = \frac{\rho_{I}}{\rho_{\rho}} \tag{3}$$

이 때, *A*, *k*, *λ*, *R_p*, *ρ_p*는 속도 퍼텐셜의 complex 진폭, 파 상수(k = 2π/λ), 파장, 입자의 반지름, 부유유체의 밀도, 입 자의 밀도를 나타낸다. 위 수식에 따라 음향방사력은 입자 의 크기에 의존하는 것을 알 수 있고, 크기가 큰 입자가 상 대적으로 크기가 작은 입자보다 표면탄성파에 의한 측면이 동량이 더 크기 때문에 크기에 따른 입자 분리가 가능할 것 임을 예상할 수 있다.

2. 소자 제작(Device fabrication)

미세유체소자는 소프트 리소그래피 기술을 통해 polydimethysiloxane (PDMS, Sylgard 184, Dow Corning, USA)로 제 작된다. 복제 몰드는 SU-8 음성 감광제(MicroChem, Newton, MA)를 이용하여 실리콘 웨이퍼에 제작된다. PDMS와 경 화제는 10:1 비율로 혼합하여, 진공 챔버에서 탈기시키며, 80°C 오븐에서 1시간동안 열경화시킨다. 경화된 PDMS 채 널은 산소 플라즈마 장비(CUTE, Femto Science Co., Korea)를 이용하여 250W, 80 mTorr 조건에서 50초동안 처리한 뒤 압전기판(Lithium niobate, LiNbO3, 128°, Y-cut, X-propagation, NEL Crystal Co., Fukushima, Japan)에 접합된다[42].

제작된 미세유동채널 소자는 1개의 입구와 2개의 출구를 가진다. 첫번째 단계 채널의 너비는 50 μm, 높이는 120 μm, 길 이는 4 cm로 설계되었고, 두번째 단계 채널의 너비는 600 μm, 높이는 120 μm, 길이는 1 cm로 설계되었다. 두번째 단계 후류는 각 200 μm의 너비를 갖는 삼분지 형태로 출구로 연 결되었다. 전도성 액체를 채우기 위한 미세전극 채널의 너 비는 100 µm, 높이는 120 µm로 제작되었다. 전극 채널은 그림 1(c)에서 볼 수 있듯이 한 지점으로 집중된 표면탄성 파를 발생시킬 수 있는 중심이 같은 원호 형태로 제작되었 고, 60°의 각도를 갖도록 설계되었다[46]. 전도성 액체를 채 우기 용이하도록 하기 위하여 구불구불한 형태를 갖는 이중 채널 형태를 가지며, 이로 인해 전극 채널의 너비를 기반으로 결정되는 표면탄성파의 파장은 λ=8 w 식을 통해 계산될 수 있다. 따라서 작동주파수($f_w = c_s \lambda$, c_s 는 기판에서 탄성 파의 전파 속도, 약 ~3600 m/s)는 이중 채널 형태의 특성 상 4.5 또는 9.0 MHz가 모두 사용 가능하며, 본 연구에서는 9.03 MHz로 사용되었다.

3. 샘플 준비(Sample preparation)

점탄성 유체로서, phosphate-buffered saline (PBS)을 기반으로 한 0.1 (w/v)% hyaluronic acid (HA) sodium salt (357 kDa, Lifecore Biomedical) 용액을 제조하였다. 해 당 용액의 zero-shear 점도와 완화시간은 각각 0.89 mPa-s와 0.25 ms였다[47].

13 µm와 27 µm의 지름을 갖는 형광 폴리스티렌 입자

(36-4 & 36-5B, ThermoFisher, Waltham, MA, USA)가 사용되었고, 입자는 HA 용액에 약 1×10⁶ particles/ml의 농도가 되도록 부유시켜 사용되었다.

4. 실험 셋업 및 절차(Experimental setup & procedure)

시료 주입 및 유동율 조절은 실린지 펌프(KDS210, KD Scientific, Holliston, MA, USA)를 사용하였다. 신호 발 생기(AFG3102C, Tektronix, USA)로 발생된 무선 주파수 신호는 직류 전원 공급기(IPS-18B10, VuPOWER)가 연결 된 증폭기(ZHL-1-2W, Mini-Circuits)를 통해 전도성 액체 로 채워진 전극 채널에 인가되어 표면탄성파를 발생시켰다. 미 세유동채널 내를 흐르는 형광입자의 유동은 도립현미경 (CKX41, Olympus, Tokyo, Japan)과 형광 카메라(CS230B. Olympus, Tokyo, Japan)를 통해 기록되었다.

Ⅲ. 연구 결과

1. 점탄성 포커싱

13 μm와 27 μm의 지름을 갖는 형광 입자의 점탄성 포 커싱 조건을 확인하기 위하여 0.1 (w/v)% HA 용액 내에서의 유동율별 입자 분포 특성을 평가하였다. 13과 27 μm 크기 입자는 50 μm 너비의 1단계 미세유동채널 내에서 모두 0.1 이상의 폐색율을 가지므로, 10 μl/min (*Re*=2.20, *Wi*=0.27, *El*=0.12) 이상의 유동율 조건에서 모두 채널의 가운데로 포 커싱됨을 확인하였다(실험결과 미첨부). 따라서, 이후의 실 험에서 유동율은 모두 10 μl/min 이상의 조건을 이용하였다.

2. 탄성파 기반 입자의 측면 이동량에 대한 인가전압의 영향

13 μm와 27 μm 크기 입자의 표면탄성파 발생을 위해 인 가하는 전압에 따른 측면이동량의 차이를 확인하기 위하여 100 μl/min (Re=22.0, Wi=2.77, El=0.12)으로 고정된 유 동율 조건에서 전압별 입자의 유동특성을 평가하였다. 그림 2는 13 V_{pp}에서 22 V_{pp}까지 1 V_{pp} 간격으로 인가전압을 조 절하였을 때 각 입자의 측면이동량 변화를 보여준다. 입자 의 측면이동량은 표면탄성파 발생 영역, 즉 두번째 단계 채 널에서 채널의 가운데로부터 채널의 벽 쪽으로 이동한 거리로 정의하였다. 두번째 단계 채널의 너비는 600 μm로, 최대 측면 이동 가능 거리는 300 μm이다.

100 µl/min의 유동조건에서 13 µm 입자는 전체 인가전 압 범위에서 모두 표면탄성파에 의한 측면이동을 보이지 않 았다. 13 V_{pp} 일 때, 낮은 인가전압 조건에서 작은 음향방사 력을 갖기 때문에 13과 27 µm 입자의 측면이동량은 차이를 보 이지 않았다. 그러나 인가전압이 높아질수록 27 µm 입자의 측면이동량이 점점 커짐에 따라 13과 27 µm 입자의 측면 이동량 차이가 커졌으며, 20 V_{pp} 의 인가전압일 때 27 µm 입자의 측면이동량이 약 95 µm로 포화되어 이후 조건에서 일정하게 유지되었다.

3. 탄성파 기반 입자의 측면 이동량에 대한 유동율의 영향

두번째 단계 채널 내에서 유동율별 13과 27 μm 입자의 측면이동량을 평가하기 위하여 20 V_{pp}의 고정 인가전압 조 건에서 25, 50, 100, 150, 200 μl/min 유동율을 이용하였 다(그림 3). 25 μl/min (*Re*=5.50, *Wi*=0.69, *El*=0.12)의 유

그림 2. 탄성파 기반 100 μl/min의 고정 유동율 조건에서 13과 27 μm 입자의 인가전압별(13-22 Vpp) 측면 이동량 평가 Fig. 2. Effect of the applied voltage ranging from 13 V_{pp} to 22 V_{pp} on the acoustic lateral migration of polystyrene particles with 13 and 27 μm diameters at the fixed flow rate of 100 μl/min

173

그림 3. 탄성파 기반 고정 인가전압 20 V_{pp} 조건에서 13과 27μm 입자의 유동율별(25-200 μl/min) 측면 이동량 평가 Fig. 3. Effect of the flow rate ranging from 25 μl/min to 200 μl/min on the acoustic lateral migration of polystyrene particles with 13 and 27 μm diameters at the fixed applied voltage of 20 V_{pp}

동율 조건에서 27 μm 입자의 측면이동량은 300 μm로 채 널의 벽면에 도달함을 확인하였고, 이는 느린 유동율로 인 하여 표면탄성파의 작동 영역 내에서 충분히 영향을 받았기 때문이다. 입자가 표면탄성파의 작동 영역 내에서 탄성파의 영향을 받는 시간을 '표면탄성파 작동시간'이라고 명명하였 다. 한편, 13 μm 입자는 상대적으로 작은 입자 크기로 인 하여 25 μl/min의 유동 조건에서 약 5 μm의 측면 이동량을 보였다. 탄성파 작동영역에서 받는 음향방사력은 식 (2)를 통 해 입자의 반지름의 6제곱에 비례(F_R~R_p⁶)하는 것을 알 수 있으며, 본 실험에서 사용한 입자 크기의 차이에 따라 27 µm 입자는 약 64배 더 큰 음향방사력의 영향을 받게 된다. 이로 인 해 발생하는 입자의 측면이동량 차이는 20 Vpp의 고정 인 가전압, 25 µl/min의 유동율 조건에서 약 60배 정도로 확 인되었다. 유동율이 25µl/min에서 200 µl/min으로 증가함에 따라 표면탄성파 작동시간이 짧아져 측면 이동량이 작아짐이 확인되었고 13 µm 입자의 측면 이동량은 수 µm 이내로 거의 이동하지 않는 것으로 나타났다. 이후 200 µl/min (Re=44.0, Wi=5.55, El=0.12)의 유동율 조건에서 13과 27 μm 입자의 측 면이동량 차이는 약 30 µm로 가장 작게 나타났다.

IV. 고찰 및 결론

본 연구에서는 점탄성 유체 기반의 입자 위치 초기화 및 표면탄성파 기반의 크기별 입자 분리의 통합 하이브리드 소 자를 제안하였다. 점탄성 유체 기반 입자 포커싱을 위한 유 동율 조건과 유동율 및 인가전압에 따른 표면탄성파 기반 입자의 측면 이동량을 평가하여 크기별 입자 분리를 위한 시스템의 활용 가능성을 확인하였다. 점탄성 유체 기반 입 자/세포 제어 기술은 생체적합성이 높은 고분자 화합물을 극 미량 추가함으로써 활용 가능하며, 표면탄성파 기반 기술은 세포에 물리적 자극을 주지 않아 전단력에 민감한 세포(예, 혈소판)에도 영향을 주지 않음이 확인된 기술이다. 따라서, 본 연구를 통해 개발된 하이브리드 소자는 도움유체의 사용, 채 널 설계의 수정 없이 고효율, 크기 가변적 입자 분리뿐만 아 니라 세포 시료의 전처리에 유용하게 활용될 수 있을 것으 로 예상한다.

References

- [1] Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. Droplet microfluidic technology for single-cell highthroughput screening. Proc. Nat. Aca. Sci. 2009;106(34): 14195-14200.
- [2] Huang NT, Chen W, Oh BR, Cornell TT, Shanley TP, Fu J, Kurabayashi K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093-4101.
- [3] Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143:2936-2970.
- [4] Shields IV CW, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip, 2015;15:1230-

1249.

- [5] Barret LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ. Dielectrophoretic Manipulation of Particles and Cells Using Insulating Ridges in Faceted Prism Microchannels. Anal. Chem. 2005;77(21):6798-6804.
- [6] Vahey MD, Volman J. An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal. Chem. 2008;80(9):3135-3143.
- [7] Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011;11:3449-3457.
- [8] Lai JJ, Nelson KE, Nash MA, Hoffman S, Yager P, Stayton PS. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip, 2009;9:1997-2002.
- [9] Leake KD, Phillips BS, Yuzvinsky TD, Hawkins AR, Schmidt H. Optical particle sorting on an optofluidic chip. Opt. Exp. 2013;21(26):32605-32610.
- [10] Minzioni P, Osellame R, Sada C, Zhao S, Omenetto F, Gylfason KB, Haraldsson T, Zhang Y, Ozcan A, Wax A. Roadmap for optofluidics. J. Opt. 2017;19:093003.
- [11] Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364.
- [12] Shi J, Mao X, Ahmed D, Colleti A, Huang TJ. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip, 2008;8:221-223.
- [13] Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip, 2009;9:2890-2895.
- [14] Nam J, Lim H, Kim C, Kang JY, Shin S. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics, 2012;6(2):024120.
- [15] Zhou J, Giridhar PV, Kasper S, Papautsky I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip, 2013;13:1919-1929.
- [16] Warkiani ME, Tay AKP, Khoo BL, Xiaofeng X, Han J, Lim CT. Malaria detection using inertial microfluidics. Lab Chip, 2015;15:1101-1109.
- [17] Hur SC, Brinckerhoff TZ, Walthers CM, Dunn JC, Carlo DD. Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics. Plos One, 2012;7(10):e46550.
- [18] Huang LR, Cox EC, Austin RH, Sturm JC. Continuous Particle Separation Through Deterministic Lateral Displacement. Science, 2004;304(5673):987-990.
- [19] Choi S, Park JK. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip, 2007;7:890-897.
- [20] Hsu CH, Carlo DD, Chen C, Irimia D, Toner M. Microvortex for focusing, guiding and sorting of particles. Lab Chip, 2008; 8:2128-2134.
- [21] Ho B, Leal L. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid, Mech. 1976;76(4):783.
- [22] Huang P, Feng J, Hu HH, Joseph DD. Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 1997;343:73.
- [23] Karimi A, Yazdi S, Ardekani A. Hydrodynamic mechanisms

of cell and particle trapping in microfluidics. Biomicrofluidics, 2013;7:021501.

- [24] Leshansky AM, Branky A, Korin N, Dinnar U. Tunable Nonlinear Viscoelastic "Focusing" in a Microfluidic Device. Phys. Rev, Lett. 2007;98:234501.
- [25] Nam J, Jang WS, Lim CS. Non-electrical powered continuous cell concentration for enumeration of residual white blood cells in WBC-depleted blood using a viscoelastic fluid. Talanta, 2019;197:12-19.
- [26] Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. DNA-based highly tunable particle focuser. Nat. Comm. 2013;4:2567.
- [27] Lim EJ, Ober, TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, McKinley GH, Toner M. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Comm. 2014;5:4120.
- [28] Lee DJ, Brenner H, Youn JR, Song YS. Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids. Sci. Rep. 2013;3:3258.
- [29] Li D, Lu X, Xuan X. Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding. Anal. Chem. 2016; 88(24):12303-12309.
- [30] Nam J, Namgung B, Lim CT, Bae JE, Leo HL, Cho KS, Kim S. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. J. Chrom. A, 2015; 1406:244-250.
- [31] Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364.
- [32] Lu X, Xuan X. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation. Anal. Chem. 2015;87(22):11523-11530.
- [33] Nam J, Jang WS, Lim CS. Viscoelastic Separation and Concentration of Fungi from Blood for Highly Sensitive Molecular Diagnostics, Sci. Rep. 2019;9:3067.
- [34] Nam J, Shin Y, Tan JKS, Lim YB, Lim CT, Kim S. Highthroughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection. Lab Chip, 2016;16: 2086-2092.
- [35] Nam J. Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow. Biomicrofluidics, 2015;9(6):064117.
- [36] Luong TD, Nguyen NT. Surface Acoustic Wave Driven Microfluidics - A Review. Micro Nanosys. 2010;2(3):217-225.
- [37] Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab Chip, 2009;9:3354-3359.
- [38] Giudice FD, Madadi H, Villone MM, D'Avino G, Cusano AM, Vecchione R, Ventre M, Maffettone PL, Netti PA. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip, 2015;15:1912-1922.
- [39] Kim MJ, Lee DJ, Youn JR, Song YS. Two step label free particle separation in a microfluidic system using elasto-inertial focusing and magnetophoresis. RSC Adv. 2016;6:32090-32097.
- [40] Wang K, Zhou W, Lin Z, Cai F, Li F, Wu J, Meng L, Niu L, Zheng H. Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves. Sens. Actu. B: Chem.

2018;258:1174-1183.

- [41] Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal. Chem. 2019; 91(15):10328-10334.
- [42] Nam J, Kim JY, Lim CS. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves). AIP Adv. 2017;7: 015314.
- [43] Nam J. Lim CS. A conductive liquid-based surface acoustic wave device. Lab Chip, 2016;16:3750-3755.
- [44] Tan MK, Tjeung R, Ervin H, Yeo LY, Friend J. Double aperture focusing transducer for controlling microparticle motions in

trapezoidal microchannels with surface acoustic waves. Appl. Phys. Lett. 2009;95:134101.

- [45] Gao Y, Wu M, Lin Y, Xu J. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Micromachines, 2020;11(10):921.
- [46] Nam J, Jang WS, Lim CS. Micromixing using a conductive liquid-based focused surface acoustic wave (CL-FSAW). Sens. Actu. B: Chemical, 2018;258:991-997.
- [47] Lim H, Back SM, Hwang MH, Lee DH, Choi H, Nam J. Sheathless High-Throughput Circulating Tumor Cell Separation Using Viscoelastic non-Newtonian Fluid. Micromachines, 2019;10(7):462.